Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0d7047ca
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0d7047ca
编写于
8月 15, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into port_pybind11
上级
4d4491ef
bd87f67f
变更
20
隐藏空白更改
内联
并排
Showing
20 changed file
with
495 addition
and
118 deletion
+495
-118
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-2
paddle/fluid/framework/details/exception_holder.h
paddle/fluid/framework/details/exception_holder.h
+33
-21
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+3
-7
paddle/fluid/framework/ir/graph.h
paddle/fluid/framework/ir/graph.h
+32
-0
paddle/fluid/framework/ir/graph_test.cc
paddle/fluid/framework/ir/graph_test.cc
+95
-1
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+1
-0
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+8
-0
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+16
-0
paddle/fluid/operators/.flatten_op.cc.swp
paddle/fluid/operators/.flatten_op.cc.swp
+0
-0
paddle/fluid/operators/cross_entropy_op.cc
paddle/fluid/operators/cross_entropy_op.cc
+52
-37
paddle/fluid/operators/cross_entropy_op.h
paddle/fluid/operators/cross_entropy_op.h
+11
-3
paddle/fluid/operators/shape_op.cc
paddle/fluid/operators/shape_op.cc
+2
-2
paddle/fluid/operators/shape_op.cu
paddle/fluid/operators/shape_op.cu
+1
-1
paddle/fluid/operators/shape_op.h
paddle/fluid/operators/shape_op.h
+1
-1
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+10
-18
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+36
-23
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+68
-0
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
+102
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+11
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+10
-2
未找到文件。
paddle/fluid/API.spec
浏览文件 @
0d7047ca
...
...
@@ -55,7 +55,7 @@ paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
, 'startup_program'], varargs=None, keywords=None, defaults=(None,)
)
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.InferenceTranspiler.__init__
...
...
@@ -159,6 +159,7 @@ paddle.fluid.layers.relu ArgSpec(args=['x'], varargs=None, keywords=None, defaul
paddle.fluid.layers.log ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
...
...
@@ -327,7 +328,7 @@ paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program'
, 'startup_program'], varargs=None, keywords=None, defaults=(None,)
)
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.transpiler.InferenceTranspiler.__init__
...
...
paddle/fluid/framework/details/exception_holder.h
浏览文件 @
0d7047ca
...
...
@@ -14,6 +14,7 @@
#pragma once
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -22,27 +23,24 @@ namespace details {
class
ExceptionHolder
{
public:
void
Catch
(
const
platform
::
EnforceNotMet
&
exp
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
exp
));
type_
=
kEnforceNotMet
;
}
void
Catch
(
const
platform
::
EOFException
&
exp
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
// EOFException will not cover up existing EnforceNotMet.
if
(
exception_
.
get
()
==
nullptr
)
{
exception_
.
reset
(
new
platform
::
EOFException
(
exp
));
type_
=
kEOF
;
void
Catch
(
std
::
exception_ptr
eptr
)
{
try
{
std
::
rethrow_exception
(
eptr
);
}
catch
(
platform
::
EOFException
exp
)
{
Catch
(
exp
);
}
catch
(
platform
::
EnforceNotMet
exp
)
{
Catch
(
exp
);
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception caught"
;
}
}
bool
ExceptionCatched
()
const
{
bool
IsCaught
()
const
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
return
exception_
.
get
()
!=
nullptr
;
}
void
Throw
()
{
void
Re
Throw
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
switch
(
type_
)
{
case
kNone
:
...
...
@@ -50,27 +48,41 @@ class ExceptionHolder {
case
kEnforceNotMet
:
{
auto
e
=
*
static_cast
<
platform
::
EnforceNotMet
*>
(
exception_
.
get
());
throw
e
;
break
;
}
case
kEOF
:
{
auto
e
=
*
static_cast
<
platform
::
EOFException
*>
(
exception_
.
get
());
throw
e
;
break
;
}
default:
LOG
(
FATAL
)
<<
"Unknown exception."
;
}
exception_
.
reset
();
type_
=
kNone
;
ClearImpl
();
}
void
Clear
()
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
ClearImpl
();
}
private:
void
ClearImpl
()
{
exception_
.
reset
();
type_
=
kNone
;
}
private:
void
Catch
(
const
platform
::
EnforceNotMet
&
exp
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
exp
));
type_
=
kEnforceNotMet
;
}
void
Catch
(
const
platform
::
EOFException
&
exp
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mu_
);
// EOFException will not cover up existing EnforceNotMet.
if
(
exception_
.
get
()
==
nullptr
)
{
exception_
.
reset
(
new
platform
::
EOFException
(
exp
));
type_
=
kEOF
;
}
}
enum
ExceptionType
{
kNone
,
kEnforceNotMet
,
kEOF
};
ExceptionType
type_
{
kNone
};
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
0d7047ca
...
...
@@ -107,11 +107,11 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto
cur_ready_vars
=
ready_vars
.
PopAll
(
1
,
&
timeout
);
if
(
timeout
)
{
if
(
exception_holder_
.
ExceptionCatched
())
{
if
(
exception_holder_
.
IsCaught
())
{
for
(
auto
&
run_op_future
:
run_op_futures_
)
{
run_op_future
.
wait
();
}
exception_holder_
.
Throw
();
exception_holder_
.
Re
Throw
();
}
else
{
continue
;
}
...
...
@@ -220,12 +220,8 @@ void ThreadedSSAGraphExecutor::RunOp(
running_ops_
--
;
ready_var_q
->
Extend
(
op
->
Outputs
());
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
"Signal posted"
;
}
catch
(
platform
::
EOFException
ex
)
{
exception_holder_
.
Catch
(
ex
);
}
catch
(
platform
::
EnforceNotMet
ex
)
{
exception_holder_
.
Catch
(
ex
);
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
exception_holder_
.
Catch
(
std
::
current_exception
())
;
}
};
if
(
pool_
)
{
...
...
paddle/fluid/framework/ir/graph.h
浏览文件 @
0d7047ca
...
...
@@ -28,6 +28,38 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
/*
* The graph is a Directed Acyclic Single Static Assignment Graph.
*
* In more detail, the following properties must hold:
*
* The graph shouldn't contain cycle. Each node is a black-box to the graph
* so the node itself could be a loop operator.
*
* Each Variable-type node has only one input (thus single static assignment).
*
* The output/input of operator is variable and the output/input of variable
* is operator.
*
* The following data harzards in Program are addressed in the Graph:
*
* Write-After-Read
* a = op1(x)
* x = op2(b)
* A control-dependency connection is created bettwen op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Write-After-Write
* x = op1(a)
* x = op2(b)
* A control-dependency connection is created between op1 and op2 such that
* op1->op2, so as to ensure correct order.
*
* Other properties currently hold, but is not enforced yet:
*
* Variable-type node (not control dep) with the same variable name share
* the same underlying VarDesc.
*/
class
Graph
{
public:
explicit
Graph
(
const
ProgramDesc
&
program
);
...
...
paddle/fluid/framework/ir/graph_test.cc
浏览文件 @
0d7047ca
...
...
@@ -36,7 +36,7 @@ class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddOutput
(
"Out"
,
""
)
.
AsDuplicable
()
;
AddComment
(
""
);
}
};
...
...
@@ -59,11 +59,27 @@ class SumOpVarTypeInference : public VarTypeInference {
block
->
Var
(
out_var_name
)
->
SetType
(
default_var_type
);
}
};
class
DummyOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
).
AsDuplicable
();
AddComment
(
""
);
}
};
class
DummyOpVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{}
};
}
// namespace framework
}
// namespace paddle
REGISTER_OPERATOR
(
sum
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
,
paddle
::
framework
::
SumOpVarTypeInference
);
REGISTER_OPERATOR
(
dummy
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
,
paddle
::
framework
::
SumOpVarTypeInference
);
REGISTER_OPERATOR
(
sum_without_infer_var_type
,
paddle
::
framework
::
NOP
,
paddle
::
framework
::
SumOpMaker
);
...
...
@@ -110,5 +126,83 @@ TEST(GraphTest, Basic) {
}
ASSERT_EQ
(
nodes
.
size
(),
5
);
}
TEST
(
GraphTest
,
WriteAfterRead
)
{
// void Test() {
ProgramDesc
prog
;
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"a"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"dummy"
);
op
->
SetInput
(
"X"
,
{
"c"
});
op
->
SetOutput
(
"Out"
,
{
"a"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"a"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"b"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"c"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
ir
::
Node
*
control_dep1
=
nullptr
;
ir
::
Node
*
control_dep2
=
nullptr
;
for
(
ir
::
Node
*
n
:
g
->
Nodes
())
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
outputs
[
0
]
->
Name
(),
"b"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
outputs
[
1
]));
control_dep1
=
n
->
outputs
[
1
];
ASSERT_EQ
(
n
->
outputs
.
size
(),
2
);
}
if
(
n
->
Name
()
==
"dummy"
)
{
ASSERT_EQ
(
n
->
inputs
[
0
]
->
Name
(),
"c"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
control_dep2
=
n
->
inputs
[
1
];
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
}
}
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
TEST
(
GraphTest
,
WriteAfterWrite
)
{
// void Test() {
ProgramDesc
prog
;
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"a"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"dummy"
);
op
->
SetInput
(
"X"
,
{
"c"
});
op
->
SetOutput
(
"Out"
,
{
"b"
});
op
->
SetAttr
(
"op_role"
,
1
);
prog
.
MutableBlock
(
0
)
->
Var
(
"a"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"b"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"c"
)
->
SetType
(
proto
::
VarType
::
LOD_TENSOR
);
std
::
unique_ptr
<
ir
::
Graph
>
g
(
new
ir
::
Graph
(
prog
));
ir
::
Node
*
control_dep1
=
nullptr
;
ir
::
Node
*
control_dep2
=
nullptr
;
for
(
ir
::
Node
*
n
:
g
->
Nodes
())
{
if
(
n
->
Name
()
==
"sum"
)
{
ASSERT_EQ
(
n
->
outputs
[
0
]
->
Name
(),
"b"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
outputs
[
1
]));
ASSERT_EQ
(
n
->
outputs
.
size
(),
2
);
control_dep1
=
n
->
outputs
[
1
];
}
if
(
n
->
Name
()
==
"dummy"
)
{
ASSERT_EQ
(
n
->
inputs
[
0
]
->
Name
(),
"c"
);
ASSERT_TRUE
(
ir
::
IsControlDepVar
(
*
n
->
inputs
[
1
]));
control_dep2
=
n
->
inputs
[
1
];
ASSERT_EQ
(
n
->
inputs
.
size
(),
2
);
ASSERT_EQ
(
control_dep1
,
control_dep2
);
}
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/tensor.cc
浏览文件 @
0d7047ca
...
...
@@ -112,5 +112,6 @@ Tensor& Tensor::Resize(const DDim& dims) {
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/tensor_impl.h
浏览文件 @
0d7047ca
...
...
@@ -59,6 +59,14 @@ inline T* Tensor::mutable_data(platform::Place place) {
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
int
rank
=
src
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
"'ReshapeToMatrix()' is only used for flatten high rank "
"tensors to matrixs. Can not be used in reshaping vectors."
);
if
(
rank
==
2
)
{
return
src
;
}
Tensor
res
;
res
.
ShareDataWith
(
src
);
res
.
Resize
(
flatten_to_2d
(
src
.
dims
(),
num_col_dims
));
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
0d7047ca
...
...
@@ -22,6 +22,9 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool
(
profile
,
false
,
"Turn on profiler for fluid"
);
namespace
paddle
{
namespace
{
...
...
@@ -58,6 +61,15 @@ bool NativePaddlePredictor::Init(
std
::
shared_ptr
<
framework
::
Scope
>
parent_scope
)
{
VLOG
(
3
)
<<
"Predictor::init()"
;
if
(
FLAGS_profile
)
{
LOG
(
WARNING
)
<<
"Profiler is actived, might affect the performance"
;
LOG
(
INFO
)
<<
"You can turn off by set gflags '-profile false'"
;
auto
tracking_device
=
config_
.
use_gpu
?
platform
::
ProfilerState
::
kAll
:
platform
::
ProfilerState
::
kCPU
;
platform
::
EnableProfiler
(
tracking_device
);
}
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
}
else
{
...
...
@@ -102,6 +114,10 @@ bool NativePaddlePredictor::Init(
}
NativePaddlePredictor
::~
NativePaddlePredictor
()
{
if
(
FLAGS_profile
)
{
platform
::
DisableProfiler
(
platform
::
EventSortingKey
::
kTotal
,
"./profile.log"
);
}
if
(
sub_scope_
)
{
scope_
->
DeleteScope
(
sub_scope_
);
}
...
...
paddle/fluid/operators/.flatten_op.cc.swp
已删除
100644 → 0
浏览文件 @
4d4491ef
文件已删除
paddle/fluid/operators/cross_entropy_op.cc
浏览文件 @
0d7047ca
...
...
@@ -28,23 +28,26 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2UL
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
"Input(X) and Input(Label) shall have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"Input(X) and Input(Label) shall have the same shape "
"except the last dimension."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
"If Attr(soft_label) == true, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"If Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1UL
,
"If Attr(softLabel) == false, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1UL
,
"If Attr(softLabel) == false, the
last
dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
1
});
auto
y_dims
=
x_dims
;
y_dims
[
rank
-
1
]
=
1
;
ctx
->
SetOutputDim
(
"Y"
,
y_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
...
...
@@ -74,24 +77,28 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel {
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
2
,
"Input(Label)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
label_dims
[
0
],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dy_dims
[
0
],
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
1
],
1
,
"The 2nd dimension of Input(Y@Grad) should be 1."
);
int
rank
=
x_dims
.
size
();
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
rank
,
"Input(Y@Grad) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
label_dims
.
size
(),
rank
,
"Input(Label) and Input(X) should have the same rank."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
label_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Label) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
0
,
rank
-
1
),
framework
::
slice_ddim
(
dy_dims
,
0
,
rank
-
1
),
"The Input(X) and Input(Y@Grad) should have the same "
"shape except the last dimension."
);
PADDLE_ENFORCE_EQ
(
dy_dims
[
rank
-
1
],
1
,
"The last dimension of Input(Y@Grad) should be 1."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"soft_label"
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
label_dims
[
1
],
"When Attr(soft_label) == true, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
x_dims
[
rank
-
1
],
label_dims
[
rank
-
1
],
"When Attr(soft_label) == true, the
last
dimension of "
"Input(X) and Input(Label) should be equal."
);
}
else
{
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
1
,
"When Attr(soft_label) == false, the
2nd
dimension of "
PADDLE_ENFORCE_EQ
(
label_dims
[
rank
-
1
],
1
,
"When Attr(soft_label) == false, the
last
dimension of "
"Input(Label) should be 1."
);
}
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
...
...
@@ -113,18 +120,20 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x D],"
" where N is the batch size and D is the number of classes. "
"This input is a probability computed by the previous operator, "
"which is almost always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor), the ground truth which is a 2-D tensor. When "
"soft_label is set to false, Label is a Tensor<int64> with shape "
"[N x 1]. When soft_label is set to true, Label is a "
"Tensor<float/double> with shape [N x D]."
);
"(Tensor, default Tensor<float>), a tensor whose last dimension "
"size is equal to the number of classes. This input is a "
"probability computed by the previous operator, which is almost "
"always the result of a softmax operator."
);
AddInput
(
"Label"
,
"(Tensor), the tensor which represents the ground truth. It has the "
"same shape with 'X' except the last dimension. When soft_label is set "
"to false, the last dimension size is 1; when soft_label is set to "
"true, the last dimension size is equal to the number of classes."
);
AddOutput
(
"Y"
,
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
"[N x 1]. The cross entropy loss."
);
"(Tensor, default Tensor<float>), a tensor whose shape is same "
"with 'X' except that the last dimension size is 1. It "
"represents the cross entropy loss."
);
AddAttr
<
bool
>
(
"soft_label"
,
"(bool, default false), a flag indicating whether to "
"interpretate the given labels as soft labels."
)
...
...
@@ -132,6 +141,12 @@ class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
CrossEntropy Operator.
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs.
The matrix's second dimension(row length) is as same as the original last
dimension, and the first dimension(column length) is the product of all other
original dimensions. Then the softmax computation will take palce on each raw
of flattened matrixs.
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
...
...
paddle/fluid/operators/cross_entropy_op.h
浏览文件 @
0d7047ca
...
...
@@ -33,8 +33,13 @@ class CrossEntropyOpKernel : public framework::OpKernel<T> {
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
rank
=
x
->
dims
().
size
();
Tensor
x_2d
=
framework
::
ReshapeToMatrix
(
*
x
,
rank
-
1
);
Tensor
labels_2d
=
framework
::
ReshapeToMatrix
(
*
labels
,
rank
-
1
);
Tensor
y_2d
=
framework
::
ReshapeToMatrix
(
*
y
,
rank
-
1
);
math
::
CrossEntropyFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
y
,
x
,
labels
,
ctx
.
template
device_context
<
DeviceContext
>(),
&
y_2d
,
&
x_2d
,
&
labels_2d
,
ctx
.
Attr
<
bool
>
(
"soft_label"
));
}
};
...
...
@@ -98,9 +103,12 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel<T> {
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
class_num
=
x
->
dims
()[
1
];
// Following computation only depends on the last dimension size. So it's
// unnecessary to convert tensors to 2-D views.
int
rank
=
x
->
dims
().
size
();
int64_t
class_num
=
x
->
dims
()[
rank
-
1
];
if
(
ctx
.
Attr
<
bool
>
(
"soft_label"
))
{
XeSoftlabelGradFunctor
<
T
>
functor
(
dx_data
,
dy
->
data
<
T
>
(),
x
->
data
<
T
>
(),
label
->
data
<
T
>
(),
...
...
paddle/fluid/operators/shape_op.cc
浏览文件 @
0d7047ca
...
...
@@ -38,7 +38,7 @@ class ShapeOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Input"
,
"(Tensor), The input tensor."
);
AddOutput
(
"Out"
,
"(Tensor), The shape of input tensor, the data type of the shape"
" is int
64
_t, will be on the same device with the input Tensor."
);
" is int
32
_t, will be on the same device with the input Tensor."
);
AddComment
(
R"DOC(
Shape Operator
...
...
@@ -53,5 +53,5 @@ Get the shape of input tensor. Only support CPU input Tensor now.
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
shape
,
ops
::
ShapeOp
,
ops
::
ShapeOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
REGISTER_OP_CPU_KERNEL
(
shape
,
ops
::
ShapeKernel
<
int
>
,
ops
::
ShapeKernel
<
int
64
_t
>
,
REGISTER_OP_CPU_KERNEL
(
shape
,
ops
::
ShapeKernel
<
int
>
,
ops
::
ShapeKernel
<
int
32
_t
>
,
ops
::
ShapeKernel
<
float
>
,
ops
::
ShapeKernel
<
double
>
);
paddle/fluid/operators/shape_op.cu
浏览文件 @
0d7047ca
...
...
@@ -15,6 +15,6 @@ limitations under the License. */
#include "paddle/fluid/operators/shape_op.h"
REGISTER_OP_CUDA_KERNEL
(
shape
,
paddle
::
operators
::
ShapeKernel
<
int
>
,
paddle
::
operators
::
ShapeKernel
<
int
64
_t
>
,
paddle
::
operators
::
ShapeKernel
<
int
32
_t
>
,
paddle
::
operators
::
ShapeKernel
<
float
>
,
paddle
::
operators
::
ShapeKernel
<
double
>
);
paddle/fluid/operators/shape_op.h
浏览文件 @
0d7047ca
...
...
@@ -27,7 +27,7 @@ class ShapeKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in_t
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
out_t
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
out_data
=
out_t
->
mutable_data
<
int
64
_t
>
(
platform
::
CPUPlace
());
auto
out_data
=
out_t
->
mutable_data
<
int
32
_t
>
(
platform
::
CPUPlace
());
auto
in_dims
=
in_t
->
dims
();
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
out_data
[
i
]
=
in_dims
[
i
];
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
0d7047ca
...
...
@@ -31,16 +31,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
// allocate memory on device.
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
X
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_x
;
framework
::
LoDTensor
flattened_out
;
flattened_x
.
ShareDataWith
(
*
X
).
Resize
(
flattened_dims
);
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
int
rank
=
X
->
dims
().
size
();
Tensor
X_2d
=
framework
::
ReshapeToMatrix
(
*
X
,
rank
-
1
);
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_x
,
&
flattened_out
);
context
.
template
device_context
<
DeviceContext
>(),
&
X_2d
,
&
Out_2d
);
}
};
...
...
@@ -55,18 +51,14 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
// allocate memory on device.
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
Out
->
dims
();
auto
flattened_dims
=
framework
::
flatten_to_2d
(
dims
,
dims
.
size
()
-
1
);
framework
::
LoDTensor
flattened_out
;
framework
::
LoDTensor
flattened_d_out
;
framework
::
LoDTensor
flattened_d_x
;
flattened_out
.
ShareDataWith
(
*
Out
).
Resize
(
flattened_dims
);
flattened_d_out
.
ShareDataWith
(
*
dOut
).
Resize
(
flattened_dims
);
flattened_d_x
.
ShareDataWith
(
*
dX
).
Resize
(
flattened_dims
);
int
rank
=
Out
->
dims
().
size
();
Tensor
Out_2d
=
framework
::
ReshapeToMatrix
(
*
Out
,
rank
-
1
);
Tensor
dOut_2d
=
framework
::
ReshapeToMatrix
(
*
dOut
,
rank
-
1
);
Tensor
dX_2d
=
framework
::
ReshapeToMatrix
(
*
dX
,
rank
-
1
);
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
&
flattened_out
,
&
flattened_d_out
,
&
flattened_d_x
);
context
.
template
device_context
<
DeviceContext
>(),
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
}
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
0d7047ca
...
...
@@ -20,9 +20,11 @@ from .layer_function_generator import autodoc, templatedoc
from
..layer_helper
import
LayerHelper
from
.
import
tensor
from
.
import
nn
from
.
import
ops
from
...
import
compat
as
cpt
import
math
import
six
import
numpy
from
functools
import
reduce
__all__
=
[
...
...
@@ -266,10 +268,11 @@ def detection_output(loc,
prior_box_var
=
prior_box_var
,
target_box
=
loc
,
code_type
=
'decode_center_size'
)
old_shape
=
scores
.
shape
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
old_shape
[
-
1
]))
compile_shape
=
scores
.
shape
run_shape
=
ops
.
shape
(
scores
)
scores
=
nn
.
flatten
(
x
=
scores
,
axis
=
2
)
scores
=
nn
.
softmax
(
input
=
scores
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
old
_shape
)
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
compile_shape
,
actual_shape
=
run
_shape
)
scores
=
nn
.
transpose
(
scores
,
perm
=
[
0
,
2
,
1
])
scores
.
stop_gradient
=
True
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
...
...
@@ -679,9 +682,10 @@ def ssd_loss(location,
raise
ValueError
(
"Only support mining_type == max_negative now."
)
num
,
num_prior
,
num_class
=
confidence
.
shape
conf_shape
=
ops
.
shape
(
confidence
)
def
__reshape_to_2d
(
var
):
return
nn
.
reshape
(
x
=
var
,
shape
=
[
-
1
,
var
.
shape
[
-
1
]]
)
return
nn
.
flatten
(
x
=
var
,
axis
=
2
)
# 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
...
...
@@ -692,7 +696,8 @@ def ssd_loss(location,
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
gt_label
=
nn
.
reshape
(
x
=
gt_label
,
shape
=
gt_label
.
shape
+
(
1
,
))
gt_label
=
nn
.
reshape
(
x
=
gt_label
,
shape
=
(
len
(
gt_label
.
shape
)
-
1
)
*
(
0
,
)
+
(
-
1
,
1
))
gt_label
.
stop_gradient
=
True
target_label
,
_
=
target_assign
(
gt_label
,
matched_indices
,
mismatch_value
=
background_label
)
...
...
@@ -703,9 +708,12 @@ def ssd_loss(location,
target_label
=
__reshape_to_2d
(
target_label
)
target_label
.
stop_gradient
=
True
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
# 3. Mining hard examples
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
))
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
...
...
@@ -774,7 +782,11 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number.
loss
=
nn
.
reshape
(
x
=
loss
,
shape
=
[
-
1
,
num_prior
])
loss
=
nn
.
reshape
(
x
=
loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
loss
=
nn
.
reduce_sum
(
loss
,
dim
=
1
,
keep_dim
=
True
)
if
normalize
:
normalizer
=
nn
.
reduce_sum
(
target_loc_weight
)
...
...
@@ -1007,13 +1019,7 @@ def multi_box_head(inputs,
"""
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
nn
.
reshape
(
x
=
input
,
shape
=
new_shape
)
out
=
nn
.
flatten
(
x
=
input
,
axis
=
axis
)
return
out
def
_is_list_or_tuple_
(
data
):
...
...
@@ -1103,11 +1109,13 @@ def multi_box_head(inputs,
stride
=
stride
)
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
new
_shape
=
[
mbox_loc
.
shape
[
0
],
mbox_loc
.
shape
[
1
]
*
mbox_loc
.
shape
[
2
]
*
cpt
.
floor_division
(
mbox_loc
.
shape
[
3
],
4
),
4
compile
_shape
=
[
mbox_loc
.
shape
[
0
],
cpt
.
floor_division
(
box_loc
.
shape
[
1
]
*
mbox_loc
.
shape
[
2
]
*
mbox_loc
.
shape
[
3
],
4
),
4
]
mbox_loc_flatten
=
nn
.
reshape
(
mbox_loc
,
shape
=
new_shape
)
run_shape
=
tensor
.
assign
(
numpy
.
array
([
0
,
-
1
,
4
]).
astype
(
"int32"
))
mbox_loc_flatten
=
nn
.
reshape
(
mbox_loc
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
mbox_locs
.
append
(
mbox_loc_flatten
)
# get conf
...
...
@@ -1119,11 +1127,16 @@ def multi_box_head(inputs,
padding
=
pad
,
stride
=
stride
)
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
new_shape
=
[
conf_loc
.
shape
[
0
],
conf_loc
.
shape
[
1
]
*
conf_loc
.
shape
[
2
]
*
cpt
.
floor_division
(
conf_loc
.
shape
[
3
],
num_classes
),
num_classes
new_shape
=
[
0
,
-
1
,
num_classes
]
compile_shape
=
[
conf_loc
.
shape
[
0
],
cpt
.
floor_division
(
conf_loc
.
shape
[
1
]
*
conf_loc
.
shape
[
2
]
*
conf_loc
.
shape
[
3
],
num_classes
),
num_classes
]
conf_loc_flatten
=
nn
.
reshape
(
conf_loc
,
shape
=
new_shape
)
run_shape
=
tensor
.
assign
(
numpy
.
array
([
0
,
-
1
,
num_classes
]).
astype
(
"int32"
))
conf_loc_flatten
=
nn
.
reshape
(
conf_loc
,
shape
=
compile_shape
,
actual_shape
=
run_shape
)
mbox_confs
.
append
(
conf_loc_flatten
)
if
len
(
box_results
)
==
1
:
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0d7047ca
...
...
@@ -112,6 +112,7 @@ __all__ = [
'log'
,
'crop'
,
'rank_loss'
,
'flatten'
,
]
...
...
@@ -5361,3 +5362,70 @@ def rank_loss(label, left, right, name=None):
"Right"
:
right
},
outputs
=
{
'Out'
:
out
})
return
out
def
flatten
(
x
,
axis
=
1
,
name
=
None
):
"""
**Flatten layer**
Flattens the input tensor into a 2D matrix.
Examples:
Case 1:
Given
X.shape = (3, 100, 100, 4)
and
axis = 2
We get:
Out.shape = (3 * 100, 4 * 100)
Case 2:
Given
X.shape = (3, 100, 100, 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
Args:
x (Variable): A tensor of rank >= axis.
axis (int): Indicate up to which input dimensions (exclusive) should
be flattened to the outer dimension of the output.
The value for axis must be in the range [0, R], where R
is the rank of the input tensor. When axis = 0, the shape
of the output tensor is (1, (d_0 X d_1 ... d_n), where the
shape of the input tensor is (d_0, d_1, ... d_n).
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
Variable: A 2D tensor with the contents of the input tensor, with input
dimensions up to axis flattened to the outer dimension of
the output and remaining input dimensions flattened into the
inner dimension of the output.
Raises:
ValueError: If x is not a variable.
ValueError: If axis is not in range [0, rank(x)].
Examples:
.. code-block:: python
x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
out = fluid.layers.flatten(x=x, axis=2)
"""
helper
=
LayerHelper
(
'flatten'
,
**
locals
())
if
not
(
isinstance
(
x
,
Variable
)):
raise
ValueError
(
"The input x should be a Variable"
)
if
not
(
isinstance
(
axis
,
int
))
or
axis
>
len
(
x
.
shape
)
or
axis
<
0
:
raise
ValueError
(
"The axis should be a int, and in range [0, rank(x)]"
)
out
=
helper
.
create_tmp_variable
(
x
.
dtype
)
helper
.
append_op
(
type
=
'flatten'
,
inputs
=
{
"X"
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
"axis"
:
axis
})
return
out
python/paddle/fluid/tests/unittests/test_cross_entropy_op.py
浏览文件 @
0d7047ca
...
...
@@ -105,5 +105,107 @@ class TestCrossEntropyOp3(OpTest):
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp4
(
OpTest
):
"""Test high rank tensor cross-entropy with discrete one-hot labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
10
,
2
,
4
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
10
X_2d
=
randomize_probability
(
ins_num
,
class_num
,
dtype
=
'float64'
)
label_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
,
1
),
dtype
=
"int64"
)
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_2d
[
i
][
0
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float64"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
1
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
False
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Y"
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp5
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized soft labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
37
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_2d
=
np
.
random
.
uniform
(
0.1
,
1.0
,
[
ins_num
,
class_num
]).
astype
(
"float32"
)
label_2d
/=
label_2d
.
sum
(
axis
=
1
,
keepdims
=
True
)
cross_entropy_2d
=
(
-
label_2d
*
np
.
log
(
X_2d
)).
sum
(
axis
=
1
,
keepdims
=
True
).
astype
(
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
class
TestCrossEntropyOp6
(
OpTest
):
"""Test high rank tensor cross-entropy with vectorized one-hot representation of labels.
"""
def
setUp
(
self
):
self
.
op_type
=
"cross_entropy"
shape
=
[
4
,
3
,
2
]
ins_num
=
np
.
prod
(
np
.
array
(
shape
))
class_num
=
17
X_2d
=
randomize_probability
(
ins_num
,
class_num
)
label_index_2d
=
np
.
random
.
randint
(
0
,
class_num
,
(
ins_num
),
dtype
=
"int32"
)
label_2d
=
np
.
zeros
(
X_2d
.
shape
)
label_2d
[
np
.
arange
(
ins_num
),
label_index_2d
]
=
1
cross_entropy_2d
=
np
.
asmatrix
(
[[
-
np
.
log
(
X_2d
[
i
][
label_index_2d
[
i
]])]
for
i
in
range
(
X_2d
.
shape
[
0
])],
dtype
=
"float32"
)
X
=
X_2d
.
reshape
(
shape
+
[
class_num
])
label
=
label_2d
.
reshape
(
shape
+
[
class_num
])
cross_entropy
=
np
.
array
(
cross_entropy_2d
).
reshape
(
shape
+
[
1
])
self
.
inputs
=
{
"X"
:
X
,
"Label"
:
label
.
astype
(
np
.
float32
)}
self
.
outputs
=
{
"Y"
:
cross_entropy
}
self
.
attrs
=
{
"soft_label"
:
True
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
"X"
],
"Y"
,
max_relative_error
=
0.05
,
numeric_grad_delta
=
0.001
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
0d7047ca
...
...
@@ -465,6 +465,17 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
def
test_flatten
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
append_batch_size
=
False
,
shape
=
[
4
,
4
,
3
],
dtype
=
"float32"
)
out
=
layers
.
flatten
(
x
,
axis
=
1
,
name
=
"flatten"
)
self
.
assertIsNotNone
(
out
)
def
test_shape
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
0d7047ca
...
...
@@ -532,7 +532,10 @@ class DistributeTranspiler(object):
pserver_program
.
_sync_with_cpp
()
return
pserver_program
def
get_startup_program
(
self
,
endpoint
,
pserver_program
):
def
get_startup_program
(
self
,
endpoint
,
pserver_program
,
startup_program
=
None
):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
...
...
@@ -542,12 +545,17 @@ class DistributeTranspiler(object):
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
startup_program (Program): if pass None, will use
default_startup_program
Returns:
Program: parameter server side startup program.
"""
s_prog
=
Program
()
orig_s_prog
=
default_startup_program
()
if
not
startup_program
:
orig_s_prog
=
default_startup_program
()
else
:
orig_s_prog
=
startup_program
s_prog
.
random_seed
=
orig_s_prog
.
random_seed
params
=
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录