Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0cc63549
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0cc63549
编写于
5月 03, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
差异文件
merge develop
上级
b8f7fa97
4a497b82
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
886 addition
and
159 deletion
+886
-159
paddle/cuda/src/hl_top_k.cu
paddle/cuda/src/hl_top_k.cu
+1
-1
paddle/fluid/operators/batch_norm_mkldnn_op.cc
paddle/fluid/operators/batch_norm_mkldnn_op.cc
+325
-0
paddle/fluid/operators/batch_norm_op.cc
paddle/fluid/operators/batch_norm_op.cc
+32
-3
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+3
-39
paddle/fluid/operators/math/cross_entropy.cu
paddle/fluid/operators/math/cross_entropy.cu
+10
-55
paddle/fluid/operators/row_conv_op.cu
paddle/fluid/operators/row_conv_op.cu
+1
-1
paddle/fluid/operators/top_k_op.cu
paddle/fluid/operators/top_k_op.cu
+4
-3
paddle/fluid/platform/cuda_device_function.h
paddle/fluid/platform/cuda_device_function.h
+74
-0
paddle/fluid/platform/cuda_primitives.h
paddle/fluid/platform/cuda_primitives.h
+0
-21
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+10
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-2
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+3
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+7
-3
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-1
python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
...dle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
+147
-0
python/paddle/fluid/tests/unittests/test_batch_norm_mkldnn_op.py
...paddle/fluid/tests/unittests/test_batch_norm_mkldnn_op.py
+56
-0
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
+38
-11
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+172
-16
未找到文件。
paddle/cuda/src/hl_top_k.cu
浏览文件 @
0cc63549
...
...
@@ -244,7 +244,7 @@ __device__ __forceinline__ void blockReduce(Pair* shTopK,
if
(
--
beamSize
==
0
)
break
;
__syncthreads
();
// temporary solution
//
NOTE(zcd):
temporary solution
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
true
);
...
...
paddle/fluid/operators/batch_norm_mkldnn_op.cc
0 → 100644
浏览文件 @
0cc63549
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "mkldnn.hpp"
#include "paddle/fluid/operators/batch_norm_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
paddle
::
platform
::
MKLDNNDeviceContext
;
using
paddle
::
platform
::
MKLDNNMemDesc
;
using
mkldnn
::
memory
;
template
<
typename
T
>
using
EigenArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
ConstEigenArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
>>
;
template
<
typename
T
>
using
EigenVectorArrayMap
=
Eigen
::
Map
<
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
template
<
typename
T
>
using
ConstEigenVectorArrayMap
=
Eigen
::
Map
<
const
Eigen
::
Array
<
T
,
Eigen
::
Dynamic
,
1
>>
;
namespace
{
template
<
typename
T
>
struct
bn_type_traits
{
using
op_type
=
T
;
using
op_desc
=
typename
op_type
::
desc
;
using
op_prim
=
typename
op_type
::
primitive_desc
;
};
template
<
typename
T
,
typename
Container
>
void
copy_to_weights
(
T
scale_begin
,
T
scale_end
,
T
shift_begin
,
T
shift_end
,
Container
*
c
)
{
auto
it
=
std
::
begin
(
*
c
);
std
::
copy
(
scale_begin
,
scale_end
,
std
::
inserter
(
*
c
,
it
));
std
::
copy
(
shift_begin
,
shift_end
,
std
::
inserter
(
*
c
,
std
::
next
(
it
,
std
::
distance
(
scale_begin
,
scale_end
))));
}
template
<
typename
Op
,
typename
...
Args
>
void
run_batch_norm_op
(
Args
&&
...
args
)
{
Op
batch_norm_op
{
args
...};
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
pipeline
.
push_back
(
batch_norm_op
);
mkldnn
::
stream
(
mkldnn
::
stream
::
kind
::
eager
).
submit
(
pipeline
).
wait
();
}
template
<
typename
T
>
inline
void
*
cast_const_to_void
(
const
T
*
t
)
{
return
static_cast
<
void
*>
(
const_cast
<
T
*>
(
t
));
}
}
// namespace
template
<
typename
T
>
class
BatchNormMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE
(
data_layout
==
framework
::
DataLayout
::
kNCHW
,
"MKLDNN batch normalization handles only NCHW data layout"
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
const
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
variance
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean_out
=
ctx
.
Output
<
Tensor
>
(
"MeanOut"
);
auto
*
variance_out
=
ctx
.
Output
<
Tensor
>
(
"VarianceOut"
);
auto
*
batch_mean
=
ctx
.
Output
<
Tensor
>
(
"SavedMean"
);
auto
*
batch_variance
=
ctx
.
Output
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
shift
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
!
is_test
)
{
batch_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
batch_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
propagation
=
is_test
==
true
?
mkldnn
::
prop_kind
::
forward_scoring
:
mkldnn
::
prop_kind
::
forward_training
;
auto
dims
=
paddle
::
framework
::
vectorize2int
(
x
->
dims
());
auto
src_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
auto
dst_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
auto
src_pd
=
mkldnn
::
memory
::
primitive_desc
{
src_md
,
mkldnn_engine
};
auto
dst_pd
=
mkldnn
::
memory
::
primitive_desc
{
dst_md
,
mkldnn_engine
};
auto
src
=
mkldnn
::
memory
{
src_pd
,
cast_const_to_void
(
x
->
data
<
T
>
())};
auto
dst
=
mkldnn
::
memory
{
dst_pd
,
y
->
data
<
T
>
()};
unsigned
flags
=
mkldnn
::
use_scale_shift
;
if
(
is_test
)
flags
|=
mkldnn
::
use_global_stats
;
using
bn_fwd_types
=
bn_type_traits
<
mkldnn
::
batch_normalization_forward
>
;
auto
batch_norm_fwd_desc
=
bn_fwd_types
::
op_desc
{
propagation
,
src_md
,
epsilon
,
flags
};
auto
batch_norm_fwd_pd
=
bn_fwd_types
::
op_prim
{
batch_norm_fwd_desc
,
mkldnn_engine
};
const
unsigned
int
ic
=
dims
[
1
];
// MKLDNN requires a single piece of memory for scale and shift/bias data
const
size_t
scaleshift_size
=
2
*
ic
;
std
::
vector
<
T
>
scaleshift_data
;
scaleshift_data
.
reserve
(
scaleshift_size
);
copy_to_weights
(
scale
->
data
<
T
>
(),
scale
->
data
<
T
>
()
+
ic
,
shift
->
data
<
T
>
(),
shift
->
data
<
T
>
()
+
ic
,
&
scaleshift_data
);
auto
scaleshift_memory
=
mkldnn
::
memory
{
batch_norm_fwd_pd
.
weights_primitive_desc
(),
scaleshift_data
.
data
()};
if
(
is_test
)
{
auto
mean_memory
=
mkldnn
::
memory
{
batch_norm_fwd_pd
.
mean_primitive_desc
(),
cast_const_to_void
(
mean
->
data
<
T
>
())};
auto
variance_memory
=
mkldnn
::
memory
{
batch_norm_fwd_pd
.
variance_primitive_desc
(),
cast_const_to_void
(
variance
->
data
<
T
>
())};
run_batch_norm_op
<
typename
bn_fwd_types
::
op_type
>
(
batch_norm_fwd_pd
,
src
,
(
const
mkldnn
::
primitive
::
at
&
)
mean_memory
,
(
const
mkldnn
::
primitive
::
at
&
)
variance_memory
,
scaleshift_memory
,
dst
);
}
else
{
auto
mean_memory
=
mkldnn
::
memory
{
batch_norm_fwd_pd
.
mean_primitive_desc
(),
cast_const_to_void
(
batch_mean
->
data
<
T
>
())};
auto
variance_memory
=
mkldnn
::
memory
{
batch_norm_fwd_pd
.
variance_primitive_desc
(),
cast_const_to_void
(
batch_variance
->
data
<
T
>
())};
run_batch_norm_op
<
bn_fwd_types
::
op_type
>
(
batch_norm_fwd_pd
,
src
,
scaleshift_memory
,
dst
,
mean_memory
,
variance_memory
);
}
if
(
!
is_test
)
{
const
unsigned
int
in
=
dims
[
0
];
const
unsigned
int
sample_size
=
x
->
numel
()
/
in
/
ic
;
// saved_xx is use just in this batch of data
EigenVectorArrayMap
<
T
>
saved_mean_e
(
batch_mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
ic
);
EigenVectorArrayMap
<
T
>
saved_variance_e
(
batch_variance
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
ic
);
saved_mean_e
.
setZero
();
saved_variance_e
.
setZero
();
const
unsigned
int
x_arr_size
=
in
*
ic
;
ConstEigenArrayMap
<
T
>
x_arr
(
x
->
data
<
T
>
(),
sample_size
,
x_arr_size
);
for
(
unsigned
int
nc
=
0
;
nc
<
x_arr_size
;
++
nc
)
{
saved_mean_e
(
nc
%
ic
)
+=
x_arr
.
col
(
nc
).
sum
();
}
saved_mean_e
/=
in
*
sample_size
;
for
(
unsigned
int
nc
=
0
;
nc
<
x_arr_size
;
++
nc
)
{
saved_variance_e
(
nc
%
ic
)
+=
(
x_arr
.
col
(
nc
)
-
saved_mean_e
(
nc
%
ic
)).
matrix
().
squaredNorm
();
}
saved_variance_e
/=
in
*
sample_size
;
ConstEigenVectorArrayMap
<
T
>
mean_arr
{
mean
->
data
<
T
>
(),
ic
};
ConstEigenVectorArrayMap
<
T
>
variance_arr
{
variance
->
data
<
T
>
(),
ic
};
EigenVectorArrayMap
<
T
>
running_mean_arr
(
mean_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
ic
);
EigenVectorArrayMap
<
T
>
running_var_arr
(
variance_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
ic
);
auto
one_minus_momentum
=
1.
-
momentum
;
running_mean_arr
=
mean_arr
*
momentum
+
saved_mean_e
*
one_minus_momentum
;
running_var_arr
=
variance_arr
*
momentum
+
saved_variance_e
*
one_minus_momentum
;
}
}
};
template
<
typename
T
>
class
BatchNormMKLDNNGradOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
auto
data_layout
=
framework
::
StringToDataLayout
(
data_layout_str
);
PADDLE_ENFORCE
(
data_layout
==
framework
::
DataLayout
::
kNCHW
,
"MKLDNN batch normalization handles only NCHW data layout"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
auto
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
shift
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
batch_mean
=
ctx
.
Input
<
Tensor
>
(
"SavedMean"
);
const
auto
*
batch_variance
=
ctx
.
Input
<
Tensor
>
(
"SavedVariance"
);
const
auto
*
diff_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
diff_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
diff_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
diff_shift
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
diff_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
diff_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
diff_shift
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dims
=
paddle
::
framework
::
vectorize2int
(
x
->
dims
());
unsigned
flags
=
mkldnn
::
use_scale_shift
|
!
mkldnn
::
use_global_stats
;
auto
src_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
auto
dst_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
auto
diff_src_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
auto
diff_dst_md
=
MKLDNNMemDesc
(
dims
,
memory
::
data_type
::
f32
,
memory
::
format
::
nchw
);
using
bn_bwd_types
=
bn_type_traits
<
mkldnn
::
batch_normalization_backward
>
;
using
bn_fwd_types
=
bn_type_traits
<
mkldnn
::
batch_normalization_forward
>
;
auto
batch_norm_fwd_desc
=
bn_fwd_types
::
op_desc
{
mkldnn
::
prop_kind
::
forward_training
,
src_md
,
epsilon
,
flags
};
auto
batch_norm_fwd_pd
=
bn_fwd_types
::
op_prim
{
batch_norm_fwd_desc
,
mkldnn_engine
};
auto
batch_norm_bwd_desc
=
bn_bwd_types
::
op_desc
{
mkldnn
::
prop_kind
::
backward
,
diff_dst_md
,
dst_md
,
epsilon
,
flags
};
auto
batch_norm_bwd_pd
=
bn_bwd_types
::
op_prim
{
batch_norm_bwd_desc
,
mkldnn_engine
,
batch_norm_fwd_pd
};
auto
src
=
mkldnn
::
memory
{{
src_md
,
mkldnn_engine
},
cast_const_to_void
(
x
->
data
<
T
>
())};
auto
mean
=
mkldnn
::
memory
{
batch_norm_bwd_pd
.
mean_primitive_desc
(),
cast_const_to_void
(
batch_mean
->
data
<
T
>
())};
auto
variance
=
mkldnn
::
memory
{
batch_norm_bwd_pd
.
variance_primitive_desc
(),
cast_const_to_void
(
batch_variance
->
data
<
T
>
())};
auto
diff_dst
=
mkldnn
::
memory
{{
diff_dst_md
,
mkldnn_engine
},
cast_const_to_void
(
diff_y
->
data
<
T
>
())};
const
unsigned
int
ic
=
dims
[
1
];
const
size_t
scaleshift_size
=
2
*
ic
;
std
::
vector
<
T
>
scaleshift_data
;
scaleshift_data
.
reserve
(
scaleshift_size
);
copy_to_weights
(
scale
->
data
<
T
>
(),
scale
->
data
<
T
>
()
+
ic
,
shift
->
data
<
T
>
(),
shift
->
data
<
T
>
()
+
ic
,
&
scaleshift_data
);
auto
scaleshift_memory
=
mkldnn
::
memory
{
batch_norm_bwd_pd
.
weights_primitive_desc
(),
scaleshift_data
.
data
()};
std
::
vector
<
T
>
diff_scaleshift_data
;
diff_scaleshift_data
.
reserve
(
scaleshift_size
);
copy_to_weights
(
diff_scale
->
data
<
T
>
(),
diff_scale
->
data
<
T
>
()
+
ic
,
diff_shift
->
data
<
T
>
(),
diff_shift
->
data
<
T
>
()
+
ic
,
&
diff_scaleshift_data
);
auto
diff_scaleshift_memory
=
mkldnn
::
memory
{
batch_norm_bwd_pd
.
diff_weights_primitive_desc
(),
diff_scaleshift_data
.
data
()};
auto
diff_src
=
mkldnn
::
memory
{{
diff_src_md
,
mkldnn_engine
},
static_cast
<
void
*>
(
diff_x
->
data
<
T
>
())};
run_batch_norm_op
<
bn_bwd_types
::
op_type
>
(
batch_norm_bwd_pd
,
src
,
mean
,
variance
,
diff_dst
,
scaleshift_memory
,
diff_src
,
diff_scaleshift_memory
);
auto
it
=
std
::
begin
(
diff_scaleshift_data
);
std
::
copy
(
it
,
std
::
next
(
it
,
ic
),
diff_scale
->
data
<
T
>
());
std
::
copy
(
std
::
next
(
it
,
ic
),
std
::
end
(
diff_scaleshift_data
),
diff_shift
->
data
<
T
>
());
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
batch_norm
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
BatchNormMKLDNNOpKernel
<
float
>
);
REGISTER_OP_KERNEL
(
batch_norm_grad
,
MKLDNN
,
paddle
::
platform
::
CPUPlace
,
ops
::
BatchNormMKLDNNGradOpKernel
<
float
>
);
paddle/fluid/operators/batch_norm_op.cc
浏览文件 @
0cc63549
...
...
@@ -15,6 +15,9 @@ limitations under the License. */
#include "paddle/fluid/operators/batch_norm_op.h"
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -106,7 +109,18 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
bn_param_type
,
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Variance"
)
->
type
()),
"Variance input should be of float type"
);
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
());
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library_
);
}
};
...
...
@@ -151,6 +165,9 @@ class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker {
"Variance of the current mini batch, "
"will apply to output when training"
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Batch Normalization.
...
...
@@ -349,8 +366,19 @@ class BatchNormGradOp : public framework::OperatorWithKernel {
if
(
t
==
nullptr
)
{
PADDLE_THROW
(
"can't find Y@GRAD"
);
}
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
t
->
type
()),
ctx
.
GetPlace
());
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
}
#endif
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
()),
ctx
.
GetPlace
(),
layout
,
library_
);
}
};
...
...
@@ -474,6 +502,7 @@ class BatchNormGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetInput
(
"Scale"
,
Input
(
"Scale"
));
op
->
SetInput
(
"Bias"
,
Input
(
"Bias"
));
op
->
SetInput
(
"SavedMean"
,
Output
(
"SavedMean"
));
op
->
SetInput
(
"SavedVariance"
,
Output
(
"SavedVariance"
));
...
...
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
0cc63549
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#ifdef __NVCC__
#include <cuda.h>
#include <thrust/iterator/iterator_adaptor.h>
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
constexpr
int
ELEMWISE_MAX_BLOCK_DIM
=
1024
;
#endif
...
...
@@ -336,43 +337,6 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
}
#ifdef __NVCC__
template
<
typename
T
>
__device__
T
reduceSum
(
T
val
,
int
tid
,
int
len
)
{
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
const
int
warpSize
=
32
;
__shared__
T
shm
[
warpSize
];
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
tid
<
len
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
platform
::
__shfl_down_sync
(
mask
,
val
,
offset
);
if
(
tid
<
warpSize
)
shm
[
tid
]
=
0
;
__syncthreads
();
if
(
tid
%
warpSize
==
0
)
{
shm
[
tid
/
warpSize
]
=
val
;
}
__syncthreads
();
CREATE_SHFL_MASK
(
mask
,
tid
<
warpSize
);
if
(
tid
<
warpSize
)
{
val
=
shm
[
tid
];
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
platform
::
__shfl_down_sync
(
mask
,
val
,
offset
);
}
return
val
;
}
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
>
static
__global__
void
ElemwiseGradBroadcast1CUDAKernel
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
...
...
@@ -395,7 +359,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(
if
(
dy
)
{
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
val
=
reduceSum
(
val
,
tid
,
h
);
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
dy
[
j
]
=
val
;
}
...
...
@@ -472,7 +436,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
if
(
dy
)
{
int
h
=
pre
*
post
;
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
val
=
reduceSum
(
val
,
tid
,
h
);
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
dy
[
j
]
=
val
;
}
...
...
paddle/fluid/operators/math/cross_entropy.cu
浏览文件 @
0cc63549
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/cross_entropy.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
...
...
@@ -30,66 +31,22 @@ __global__ void CrossEntropyKernel(T* Y, const T* X, const int64_t* label,
}
}
template
<
typename
T
>
__device__
__forceinline__
T
sum_single_warp
(
T
val
)
{
val
+=
platform
::
__shfl_down_sync
(
0
,
val
,
16
);
val
+=
platform
::
__shfl_down_sync
(
0
,
val
,
8
);
val
+=
platform
::
__shfl_down_sync
(
0
,
val
,
4
);
val
+=
platform
::
__shfl_down_sync
(
0
,
val
,
2
);
val
+=
platform
::
__shfl_down_sync
(
0
,
val
,
1
);
return
val
;
}
// CUDA do not support dynamic arrary in template
// https://stackoverflow.com/questions/20497209
template
<
typename
T
>
struct
SharedMemory
{
// Ensure that we won't compile any un-specialized types
__device__
T
*
GetPointer
()
{
return
NULL
;
}
};
template
<
>
struct
SharedMemory
<
float
>
{
__device__
float
*
GetPointer
()
{
extern
__shared__
float
s_float
[];
return
s_float
;
}
};
template
<
>
struct
SharedMemory
<
double
>
{
__device__
double
*
GetPointer
()
{
extern
__shared__
double
s_double
[];
return
s_double
;
}
};
template
<
typename
T
>
__global__
void
SoftCrossEntropyKernel
(
T
*
Y
,
const
T
*
X
,
const
T
*
label
,
const
int
class_num
)
{
int
tid
=
threadIdx
.
x
;
SharedMemory
<
T
>
d_sum_shared
;
T
*
d_sum
=
d_sum_shared
.
GetPointer
();
d_sum
[
tid
]
=
0
;
T
val
=
0
;
int
cur_idx
=
tid
;
int
next_idx
=
blockIdx
.
x
*
class_num
+
tid
;
while
(
cur_idx
<
class_num
)
{
d_sum
[
tid
]
+=
math
::
TolerableValue
<
T
>
()(
std
::
log
(
X
[
next_idx
]))
*
label
[
next_idx
];
next_idx
+=
blockDim
.
x
;
cur_idx
+=
blockDim
.
x
;
int
idx
=
blockIdx
.
x
*
class_num
+
tid
;
int
end
=
blockIdx
.
x
*
class_num
+
class_num
;
for
(;
idx
<
end
;
idx
+=
blockDim
.
x
)
{
val
+=
math
::
TolerableValue
<
T
>
()(
std
::
log
(
X
[
idx
]))
*
label
[
idx
];
}
__syncthreads
();
for
(
unsigned
int
stride
=
blockDim
.
x
>>
1
;
stride
>=
32
;
stride
>>=
1
)
{
if
(
tid
<
stride
)
d_sum
[
tid
]
+=
d_sum
[
tid
+
stride
];
__syncthreads
()
;
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
blockDim
.
x
);
if
(
threadIdx
.
x
==
0
)
{
Y
[
blockIdx
.
x
]
=
-
val
;
}
T
val
=
d_sum
[
tid
];
val
=
sum_single_warp
<
T
>
(
val
);
if
(
tid
==
0
)
Y
[
blockIdx
.
x
]
=
-
val
;
}
}
// namespace
...
...
@@ -113,9 +70,7 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
?
512
:
pow
(
2
,
static_cast
<
int
>
(
std
::
log2
(
class_num
)));
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
block
*
sizeof
(
T
),
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
).
stream
()
>>>
(
SoftCrossEntropyKernel
<
T
><<<
batch_size
,
block
,
0
,
ctx
.
stream
()
>>>
(
loss_data
,
prob_data
,
label_data
,
class_num
);
}
else
{
const
int64_t
*
label_data
=
labels
->
data
<
int64_t
>
();
...
...
paddle/fluid/operators/row_conv_op.cu
浏览文件 @
0cc63549
...
...
@@ -14,7 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/row_conv_op.h"
#include "paddle/fluid/platform/cuda_
primitives
.h"
#include "paddle/fluid/platform/cuda_
device_function
.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/top_k_op.cu
浏览文件 @
0cc63549
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/top_k_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cuda_
primitives
.h"
#include "paddle/fluid/platform/cuda_
device_function
.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -236,12 +236,13 @@ __device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
sh_topk
[
tid
]
=
topk
[
*
beam
];
}
}
// temporary solution
//
NOTE(zcd):
temporary solution
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
true
);
if
(
maxid
[
0
]
/
32
==
warp
)
{
if
(
__shfl_sync
(
mask
,
*
beam
,
(
maxid
[
0
])
%
32
,
32
)
==
MaxLength
)
break
;
if
(
platform
::
__shfl_sync
(
mask
,
*
beam
,
(
maxid
[
0
])
%
32
,
32
)
==
MaxLength
)
break
;
}
}
}
...
...
paddle/fluid/platform/cuda_device_function.h
0 → 100644
浏览文件 @
0cc63549
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cuda.h>
namespace
paddle
{
namespace
platform
{
// __shfl_down and __shfl have been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_down_sync
(
unsigned
,
T
val
,
int
delta
)
{
return
__shfl_down
(
val
,
delta
);
}
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_sync
(
unsigned
,
T
val
,
int
src_line
,
int
width
)
{
return
__shfl
(
val
,
src_line
,
width
);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
template
<
typename
T
>
__device__
T
reduceSum
(
T
val
,
int
tid
,
int
len
)
{
// NOTE(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
const
int
warpSize
=
32
;
__shared__
T
shm
[
warpSize
];
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
tid
<
len
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
platform
::
__shfl_down_sync
(
mask
,
val
,
offset
);
if
(
tid
<
warpSize
)
shm
[
tid
]
=
0
;
if
(
tid
%
warpSize
==
0
)
{
shm
[
tid
/
warpSize
]
=
val
;
}
__syncthreads
();
CREATE_SHFL_MASK
(
mask
,
tid
<
warpSize
);
if
(
tid
<
warpSize
)
{
val
=
shm
[
tid
];
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
val
+=
platform
::
__shfl_down_sync
(
mask
,
val
,
offset
);
}
return
val
;
}
}
// namespace platform
}
// namespace paddle
paddle/fluid/platform/cuda_primitives.h
浏览文件 @
0cc63549
...
...
@@ -65,26 +65,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
return
__longlong_as_double
(
old
);
}
#endif
// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_down_sync
(
unsigned
,
T
val
,
int
delta
)
{
return
__shfl_down
(
val
,
delta
);
}
template
<
typename
T
>
__forceinline__
__device__
T
__shfl_sync
(
unsigned
,
T
val
,
int
src_line
,
int
width
)
{
return
__shfl
(
val
,
src_line
,
width
);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif
}
// namespace platform
}
// namespace paddle
paddle/scripts/paddle_build.sh
浏览文件 @
0cc63549
...
...
@@ -40,6 +40,7 @@ function print_usage() {
${
BLUE
}
capi
${
NONE
}
: generate paddle CAPI package
${
BLUE
}
fluid_inference_lib
${
NONE
}
: deploy fluid inference library
${
BLUE
}
check_style
${
NONE
}
: run code style check
${
BLUE
}
cicheck
${
NONE
}
: run CI tasks
"
}
...
...
@@ -453,6 +454,8 @@ function gen_capi_package() {
}
function
gen_fluid_inference_lib
()
{
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
if
[
${
WITH_C_API
:-
OFF
}
==
"OFF"
]
;
then
cat
<<
EOF
========================================
...
...
@@ -503,6 +506,13 @@ function main() {
check_style
)
check_style
;;
cicheck
)
cmake_gen
${
PYTHON_ABI
:-
""
}
build
run_test
gen_capi_package
gen_fluid_inference_lib
;;
*
)
print_usage
exit
0
...
...
python/paddle/fluid/__init__.py
浏览文件 @
0cc63549
...
...
@@ -21,8 +21,7 @@ import executor
from
executor
import
*
import
trainer
from
trainer
import
Trainer
from
trainer
import
Event
from
trainer
import
*
import
inferencer
from
inferencer
import
Inferencer
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
0cc63549
...
...
@@ -50,8 +50,6 @@ def data(name,
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
main_program(Program): Name of the main program that calls this
startup_program(Program): Name of the startup program
stop_gradient(bool): A boolean that mentions whether gradient should flow.
Returns:
...
...
@@ -74,13 +72,15 @@ def data(name,
if
append_batch_size
:
shape
=
[
-
1
]
+
shape
# append batch size as -1
return
helper
.
create_global_variable
(
data_var
=
helper
.
create_global_variable
(
name
=
name
,
shape
=
shape
,
dtype
=
dtype
,
type
=
type
,
stop_gradient
=
stop_gradient
,
lod_level
=
lod_level
)
data_var
.
is_data
=
True
return
data_var
class
BlockGuardServ
(
BlockGuard
):
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
0cc63549
...
...
@@ -1496,6 +1496,7 @@ def batch_norm(input,
bias_attr
=
None
,
data_layout
=
'NCHW'
,
in_place
=
False
,
use_mkldnn
=
False
,
name
=
None
,
moving_mean_name
=
None
,
moving_variance_name
=
None
,
...
...
@@ -1574,9 +1575,12 @@ def batch_norm(input,
"SavedMean"
:
saved_mean
,
"SavedVariance"
:
saved_variance
},
attrs
=
{
"momentum"
:
momentum
,
"epsilon"
:
epsilon
,
"is_test"
:
is_test
})
attrs
=
{
"momentum"
:
momentum
,
"epsilon"
:
epsilon
,
"is_test"
:
is_test
,
"use_mkldnn"
:
use_mkldnn
})
return
helper
.
append_activation
(
batch_norm_out
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
0cc63549
...
...
@@ -28,7 +28,8 @@ from contextlib import contextmanager
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'Adadelta'
,
'ModelAverage'
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'Optimizer'
]
...
...
python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
0 → 100644
浏览文件 @
0cc63549
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
math
import
sys
from
functools
import
partial
PASS_NUM
=
100
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
32
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
# The range of data elements is [low, high]
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
def
inference_network
(
is_sparse
):
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
embed_first
=
fluid
.
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
return
predict_word
def
train_network
(
is_sparse
):
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
inference_network
(
is_sparse
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
def
train
(
use_cuda
,
is_sparse
,
save_path
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
def
event_handler
(
event
):
print
type
(
event
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
avg_cost
=
trainer
.
test
(
reader
=
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
N
))
if
avg_cost
<
5.0
:
trainer
.
params
.
save
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_network
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
100
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
result
=
inferencer
.
infer
({
'firstw'
:
first_word
,
'secondw'
:
second_word
,
'thirdw'
:
third_word
,
'forthw'
:
fourth_word
})
print
(
result
)
def
main
(
use_cuda
,
is_sparse
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.inference.model"
train
(
use_cuda
,
is_sparse
,
save_path
)
infer
(
use_cuda
,
save_path
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
for
is_sparse
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
)
python/paddle/fluid/tests/unittests/test_batch_norm_mkldnn_op.py
0 → 100644
浏览文件 @
0cc63549
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
import
paddle.fluid
as
fluid
from
op_test
import
OpTest
from
paddle.fluid.framework
import
grad_var_name
from
test_batch_norm_op
import
TestBatchNormOpInference
,
TestBatchNormOpTraining
,
_reference_training
,
_reference_grad
class
TestMKLDNNBatchNormOpTraining
(
TestBatchNormOpTraining
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
self
.
data_formats
=
[
"NCHW"
]
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
# run forward
y
,
saved_mean
,
saved_variance
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
saved_variance
*
(
1.
-
momentum
)
+
momentum
*
variance
# run backward
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
saved_variance
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
class
TestMKLDNNBatchNormOpInference
(
TestBatchNormOpInference
):
def
init_kernel_type
(
self
):
self
.
use_mkldnn
=
True
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
data_format
=
"NCHW"
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
,
4
,
5
])
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_batch_norm_op.py
浏览文件 @
0cc63549
...
...
@@ -158,6 +158,8 @@ def set_output_grad(scope, outputs, place, feed_dict=None):
class
TestBatchNormOpInference
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float32
self
.
use_mkldnn
=
False
self
.
init_kernel_type
()
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
self
.
assertTrue
(
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
),
msg
)
...
...
@@ -230,6 +232,7 @@ class TestBatchNormOpInference(unittest.TestCase):
# attrs
is_test
=
True
,
data_layout
=
data_layout
,
use_mkldnn
=
self
.
use_mkldnn
,
epsilon
=
epsilon
)
batch_norm_op
.
run
(
scope
,
place
)
...
...
@@ -254,10 +257,15 @@ class TestBatchNormOpInference(unittest.TestCase):
[
2
,
3
,
4
,
5
])
self
.
check_with_place
(
place
,
data_format
,
self
.
dtype
,
[
2
,
3
])
def
init_kernel_type
(
self
):
pass
class
TestFP16BatchNormOpInference
(
TestBatchNormOpInference
):
def
setUp
(
self
):
self
.
dtype
=
np
.
float16
self
.
use_mkldnn
=
False
self
.
init_kernel_type
()
def
test_check_output
(
self
):
places
=
[]
...
...
@@ -274,9 +282,28 @@ class TestFP16BatchNormOpInference(TestBatchNormOpInference):
class
TestBatchNormOpTraining
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
use_mkldnn
=
False
self
.
data_formats
=
[
"NCHW"
,
"NHWC"
]
self
.
init_kernel_type
()
def
__assert_close
(
self
,
tensor
,
np_array
,
msg
,
atol
=
1e-4
):
np
.
allclose
(
np
.
array
(
tensor
),
np_array
,
atol
=
atol
)
def
ref_forward_backward
(
self
,
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
):
# run forward
y
,
saved_mean
,
var_ref
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# run backward
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
var_ref
,
epsilon
,
data_layout
)
return
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
def
test_forward_backward
(
self
):
def
test_with_place
(
place
,
data_layout
,
shape
):
# attr
...
...
@@ -295,16 +322,11 @@ class TestBatchNormOpTraining(unittest.TestCase):
mean
=
np
.
zeros
(
scale_shape
).
astype
(
np
.
float32
)
variance
=
np
.
ones
(
scale_shape
).
astype
(
np
.
float32
)
# run forward
y
,
saved_mean
,
var_ref
=
_reference_training
(
x
,
scale
,
bias
,
epsilon
,
data_layout
)
mean_out
=
saved_mean
*
(
1.
-
momentum
)
+
momentum
*
mean
variance_out
=
var_ref
*
(
1.
-
momentum
)
+
momentum
*
variance
saved_variance
=
1.
/
np
.
sqrt
(
var_ref
+
epsilon
)
# run backward
y_grad
=
np
.
random
.
random_sample
(
shape
).
astype
(
np
.
float32
)
x_grad
,
scale_grad
,
bias_grad
=
_reference_grad
(
x
,
y_grad
,
scale
,
saved_mean
,
var_ref
,
epsilon
,
data_layout
)
y
,
mean_out
,
variance_out
,
saved_mean
,
saved_variance
,
x_grad
,
scale_grad
,
bias_grad
=
self
.
ref_forward_backward
(
x
,
y_grad
,
scale
,
bias
,
mean
,
variance
,
epsilon
,
momentum
,
shape
,
data_layout
)
var_dict
=
locals
()
var_dict
[
'y@GRAD'
]
=
y_grad
...
...
@@ -344,7 +366,8 @@ class TestBatchNormOpTraining(unittest.TestCase):
"momentum"
:
momentum
,
"epsilon"
:
epsilon
,
"is_test"
:
False
,
"data_layout"
:
data_layout
"data_layout"
:
data_layout
,
"use_mkldnn"
:
self
.
use_mkldnn
})
block
.
create_var
(
name
=
'y@GRAD'
,
dtype
=
'float32'
,
shape
=
y
.
shape
)
...
...
@@ -387,13 +410,17 @@ class TestBatchNormOpTraining(unittest.TestCase):
print
"op test forward passed: "
,
str
(
place
),
data_layout
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
()
and
core
.
op_support_gpu
(
"batch_norm"
):
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
for
data_format
in
[
"NCHW"
,
"NHWC"
]
:
for
data_format
in
self
.
data_formats
:
test_with_place
(
place
,
data_format
,
[
2
,
3
,
4
,
5
])
def
init_kernel_type
(
self
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
0cc63549
...
...
@@ -12,44 +12,200 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
core
import
framework
import
executor
import
data_feeder
import
contextlib
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import
optimizer
as
opt_module
__all__
=
[
'Event'
,
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
]
class
Event
(
object
):
BEGIN_EPOCH
=
0
END_EPOCH
=
1
BEGIN_STEP
=
2
END_STEP
=
3
class
BeginEpochEvent
(
object
):
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
class
EndEpochEvent
(
object
):
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
def
__init__
(
self
):
self
.
step
=
0
self
.
epoch
=
0
self
.
type
=
Event
.
BEGIN_EPOCH
class
BeginStepEvent
(
object
):
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
class
EndStepEvent
(
object
):
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
class
Trainer
(
object
):
"""
Args:
network_func(callable): A function which will return loss. The loss must be a scaler.
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
params:
place: The device place of this trainer.
"""
def
__init__
(
self
,
network_func
,
optimizer
,
params
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# network_func. Reference: fluid.program_guard in
# test_word2vec.py
self
.
scope
=
self
.
_get_scope_from_params
(
params
)
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
loss
=
network_func
()
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
optimizer
.
minimize
(
loss
)
self
.
place
=
Trainer
.
_check_and_get_place
(
place
)
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
# Run startup program
if
params
is
None
:
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
,
scope
=
self
.
scope
)
# 3. call self.params.add_vars with the initialized scope, it
# will add the new vars of the initialized scope into
# self.params.
self
.
network_func
=
network_func
self
.
optimizer
=
optimizer
self
.
params
=
params
self
.
place
=
place
# TODO(yuyang): This depends on parameters implementation.
# TODO(helin): support distributed training
def
train
(
self
,
reader
,
num_epochs
,
event_handler
):
pass
def
train
(
self
,
num_epochs
,
event_handler
,
reader
=
None
,
parallel
=
False
,
feed_order
=
None
):
"""
Train the model.
Args:
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
reader:
parallel: True if use multi-CPUs or multi-GPUs
feed_order: Feeding order of reader. None will following the defining
order in program
Returns:
"""
if
parallel
:
raise
NotImplementedError
(
"Parallel Executor version of trainer is not implemented"
)
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
):
pass
def
_get_scope_from_params
(
self
,
params
):
"""
Get Scope from parameter object.
Args:
params(Parameter|None): The parameter object instance. Could be None.
Returns: New scope if params is None. Or params.scope()
NOTE: This method is WIP. Not fully implemented.
"""
if
params
is
None
:
return
core
.
Scope
()
# new scope when params is None
else
:
raise
NotImplementedError
(
"Not implemented right now."
)
@
staticmethod
def
_check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
train_program
,
startup_program
=
self
.
startup_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
def
_train_by_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
"""
Train by Executor and single device.
Args:
num_epochs:
event_handler:
reader:
feed_order:
Returns:
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
if
feed_order
is
None
:
feed_var_list
=
[
var
for
var
in
self
.
train_program
.
global_block
(
).
vars
.
itervalues
()
if
hasattr
(
var
,
'is_data'
)
and
var
.
is_data
]
else
:
feed_var_list
=
[
self
.
train_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
for
epoch_id
in
range
(
num_epochs
):
event_handler
(
BeginEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
event_handler
(
BeginStepEvent
(
epoch_id
,
step_id
))
exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[])
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
))
event_handler
(
EndEpochEvent
(
epoch_id
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录