提交 0c554a59 编写于 作者: S sneaxiy

merge develop

test=develop
......@@ -131,11 +131,13 @@ cc_test(version_test SRCS version_test.cc DEPS version)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version)
if(NOT WIN32)
cc_library(ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto ngraph)
cc_library(ngraph_operator SRCS ngraph_operator.cc DEPS ngraph_bridge operator op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler)
endif(NOT WIN32)
if(WITH_NGRAPH)
if(NOT WIN32)
cc_library(ngraph_bridge SRCS ngraph_bridge.cc DEPS operator framework_proto ngraph)
cc_library(ngraph_operator SRCS ngraph_operator.cc DEPS ngraph_bridge operator op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler ngraph)
endif(NOT WIN32)
endif(WITH_NGRAPH)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc)
nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
......@@ -171,14 +173,20 @@ if(WITH_DISTRIBUTE)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
set_source_files_properties(executor.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
else()
if(NOT WIN32)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass ngraph_operator variable_helper garbage_collector)
else(NOT WIN32)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass variable_helper garbage_collector)
endif(NOT WIN32)
if(WITH_NGRAPH)
if(NOT WIN32)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass ngraph ngraph_operator variable_helper)
else(NOT WIN32)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass variable_helper)
endif(NOT WIN32)
else(WITH_NGRAPH)
cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass variable_helper)
endif(WITH_NGRAPH)
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
target_link_libraries(executor garbage_collector)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
......
......@@ -18,7 +18,6 @@ limitations under the License. */
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/ngraph_operator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
......@@ -27,6 +26,10 @@ limitations under the License. */
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#ifdef PADDLE_WITH_NGRAPH
#include "paddle/fluid/framework/ngraph_operator.h"
#endif
DECLARE_bool(benchmark);
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
......@@ -131,11 +134,11 @@ static void DeleteUnusedTensors(
static void EnableFusedOp(ExecutorPrepareContext* ctx) {
#ifdef PADDLE_WITH_NGRAPH
VLOG(3) << "use_ngraph=True";
auto intervals = FusedOperator::FusedOpIntervals(&ctx->ops_);
auto intervals = NgraphOperator::NgraphOpIntervals(&ctx->ops_);
for (auto& interval : intervals) {
auto* fused_op = new FusedOperator(ctx->prog_, ctx->block_id_,
interval.at(0), interval.at(1));
*interval[0] = std::unique_ptr<OperatorBase>(fused_op);
auto* ng_op = new NgraphOperator(ctx->prog_, ctx->block_id_, interval.at(0),
interval.at(1));
*interval[0] = std::unique_ptr<OperatorBase>(ng_op);
}
for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
ctx->ops_.erase(it->at(0) + 1, it->at(1));
......
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#include <algorithm>
#include <functional>
#include <vector>
......@@ -27,14 +26,15 @@ namespace paddle {
namespace framework {
static std::shared_ptr<ngraph::Node> GetNode(
const std::shared_ptr<OperatorBase>& op, const std::string prm,
const std::shared_ptr<OperatorBase>& op, const std::string name,
const VariableNameMap& var_map,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto& var_names = var_map.at(prm);
auto& var_names = var_map.at(name);
PADDLE_ENFORCE_EQ(var_names.size(), 1,
"op %s prm %s expects one associated var", op->Type(), prm);
"op %s name %s expects one associated var", op->Type(),
name);
if (ngb_node_map->find(var_names[0]) != ngb_node_map->end()) {
return (*ngb_node_map)[var_names[0]];
} else {
......@@ -43,42 +43,42 @@ static std::shared_ptr<ngraph::Node> GetNode(
}
static std::shared_ptr<ngraph::Node> GetInputNode(
const std::shared_ptr<OperatorBase>& op, const std::string prm,
const std::shared_ptr<OperatorBase>& op, const std::string name,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
return GetNode(op, prm, op->Inputs(), ngb_node_map);
return GetNode(op, name, op->Inputs(), ngb_node_map);
}
static std::shared_ptr<ngraph::Node> GetOutputNode(
const std::shared_ptr<OperatorBase>& op, const std::string prm,
const std::shared_ptr<OperatorBase>& op, const std::string name,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
return GetNode(op, prm, op->Outputs(), ngb_node_map);
return GetNode(op, name, op->Outputs(), ngb_node_map);
}
static void SetOutputNode(
const std::shared_ptr<OperatorBase>& op, const std::string prm,
const std::shared_ptr<OperatorBase>& op, const std::string name,
std::shared_ptr<ngraph::Node> node,
std::shared_ptr<
std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>
ngb_node_map) {
auto& var_names = op->Outputs().at(prm);
auto& var_names = op->Outputs().at(name);
if (var_names.size() == 1) {
(*ngb_node_map)[var_names[0]] = node;
} else if (var_names.size() == 0) {
(*ngb_node_map)[""] = node;
} else {
PADDLE_THROW("prm %s has more than 1 var_names.", prm);
PADDLE_THROW("name %s has more than 1 var_names.", name);
}
}
static bool HasOutput(const std::shared_ptr<OperatorBase>& op,
const std::string prm) {
const std::string name) {
auto& outputs = op->Outputs();
if (outputs.find(prm) == outputs.end()) return false;
return outputs.at(prm).size() > 0;
if (outputs.find(name) == outputs.end()) return false;
return outputs.at(name).size() > 0;
}
template <typename T>
......@@ -118,4 +118,3 @@ void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) {
} // namespace framework
} // namespace paddle
#endif
......@@ -14,8 +14,6 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_NGRAPH
#include <algorithm>
#include <map>
#include <string>
......@@ -53,4 +51,3 @@ class NgraphBridge {
} // namespace framework
} // namespace paddle
#endif
......@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_NGRAPH
#include <glog/logging.h>
#include <algorithm>
......@@ -58,16 +57,16 @@ typedef enum { /* nGraph support state on ops */
} op_state;
// perform graph build through bridge and execute computation
class NgraphOperator {
class NgraphEngine {
public:
explicit NgraphOperator(const Scope& scope, const platform::Place& place,
const std::vector<std::shared_ptr<OperatorBase>>& ops,
const std::unordered_map<
std::string, ngraph::element::Type>& var_type_map,
const std::unordered_set<std::string>& persist,
const std::unordered_set<std::string>& fetches,
const std::unordered_set<std::string>& post_op_inputs,
op_state ng_op_state)
explicit NgraphEngine(const Scope& scope, const platform::Place& place,
const std::vector<std::shared_ptr<OperatorBase>>& ops,
const std::unordered_map<
std::string, ngraph::element::Type>& var_type_map,
const std::unordered_set<std::string>& persist,
const std::unordered_set<std::string>& fetches,
const std::unordered_set<std::string>& post_op_inputs,
op_state ng_op_state)
: scope_(scope),
place_(place),
fused_ops_(ops),
......@@ -132,7 +131,7 @@ class NgraphOperator {
};
std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
FusedOperator::FusedOpIntervals(
NgraphOperator::NgraphOpIntervals(
std::vector<std::unique_ptr<paddle::framework::OperatorBase>>* ops) {
std::vector<std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
intervals;
......@@ -185,7 +184,7 @@ FusedOperator::FusedOpIntervals(
return intervals;
}
FusedOperator::FusedOperator(
NgraphOperator::NgraphOperator(
const ProgramDesc& prog, size_t block_id,
std::vector<std::unique_ptr<OperatorBase>>::iterator start,
std::vector<std::unique_ptr<OperatorBase>>::iterator end,
......@@ -215,7 +214,7 @@ FusedOperator::FusedOperator(
Process();
}
void FusedOperator::Process() {
void NgraphOperator::Process() {
auto& bdesc = pdesc_.Block(block_);
for (auto& var : bdesc.AllVars()) {
if (!(var->GetType() == proto::VarType::SELECTED_ROWS ||
......@@ -251,8 +250,8 @@ void FusedOperator::Process() {
}
}
void FusedOperator::RunImpl(const Scope& scope,
const platform::Place& place) const {
void NgraphOperator::RunImpl(const Scope& scope,
const platform::Place& place) const {
op_state ng_op_state = PARTIAL_TEST;
auto& bdesc = pdesc_.Block(block_);
for (auto* op : bdesc.AllOps()) {
......@@ -266,19 +265,19 @@ void FusedOperator::RunImpl(const Scope& scope,
ng_op_state = ng_op_state == PARTIAL_TEST ? FULL_TEST : FULL_TRAIN;
}
NgraphOperator ngraph_op(scope, place, fused_ops_, var_type_map_,
persistables_, fetches_, post_op_inputs_,
ng_op_state);
ngraph_op.Run(scope, place);
NgraphEngine ngraph_engine(scope, place, fused_ops_, var_type_map_,
persistables_, fetches_, post_op_inputs_,
ng_op_state);
ngraph_engine.Run(scope, place);
}
std::unordered_map<std::string, std::shared_ptr<ngraph::Function>>
NgraphOperator::func_cache_ = {};
NgraphEngine::func_cache_ = {};
std::shared_ptr<ngraph::runtime::Backend> NgraphOperator::backend_ =
std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
ngraph::runtime::Backend::create("CPU");
void NgraphOperator::GetNgInputShape(std::shared_ptr<OperatorBase> op) {
void NgraphEngine::GetNgInputShape(std::shared_ptr<OperatorBase> op) {
op->RuntimeInferShape(scope_, place_);
for (auto& var_name_item : op->Inputs()) {
for (auto& var_name : var_name_item.second) {
......@@ -301,7 +300,7 @@ void NgraphOperator::GetNgInputShape(std::shared_ptr<OperatorBase> op) {
}
}
void NgraphOperator::BuildNgNodes() {
void NgraphEngine::BuildNgNodes() {
for (auto& var_name : var_out_) {
if (var_node_map_->find(var_name) == var_node_map_->end()) {
auto* var = scope_.FindVar(var_name);
......@@ -323,7 +322,7 @@ void NgraphOperator::BuildNgNodes() {
}
}
void NgraphOperator::BuildNgIO() {
void NgraphEngine::BuildNgIO() {
std::unordered_set<std::string> inputs;
std::unordered_set<std::string> outputs;
......@@ -395,7 +394,7 @@ void NgraphOperator::BuildNgIO() {
}
}
void NgraphOperator::BuildNgFunction() {
void NgraphEngine::BuildNgFunction() {
BuildNgNodes();
ngraph_function_ = nullptr;
ngraph::NodeVector func_outputs;
......@@ -416,7 +415,7 @@ void NgraphOperator::BuildNgFunction() {
std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}
std::shared_ptr<std::string> NgraphOperator::GetCacheKey() {
std::shared_ptr<std::string> NgraphEngine::GetCacheKey() {
auto cache_key = std::make_shared<std::string>("");
*cache_key += std::to_string(fused_ops_.size());
for (auto& op : fused_ops_) {
......@@ -444,7 +443,7 @@ std::shared_ptr<std::string> NgraphOperator::GetCacheKey() {
return cache_key;
}
void NgraphOperator::GetNgFunction() {
void NgraphEngine::GetNgFunction() {
bool cache_on = true;
if (cache_on) {
std::string cache_key_val = *GetCacheKey();
......@@ -459,8 +458,7 @@ void NgraphOperator::GetNgFunction() {
}
}
void NgraphOperator::Run(const Scope& scope,
const platform::Place& place) const {
void NgraphEngine::Run(const Scope& scope, const platform::Place& place) const {
std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in;
std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out;
......@@ -545,7 +543,6 @@ void NgraphOperator::Run(const Scope& scope,
}
backend_->call(ngraph_function_, t_out, t_in);
} // NgraphOperator::RunImpl
} // NgraphEngine::RunImpl
} // namespace framework
} // namespace paddle
#endif
......@@ -14,8 +14,6 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_WITH_NGRAPH
#include <algorithm>
#include <string>
#include <unordered_map>
......@@ -34,14 +32,14 @@ limitations under the License. */
namespace paddle {
namespace framework {
class FusedOperator : public OperatorBase {
class NgraphOperator : public OperatorBase {
public:
static std::vector<
std::vector<std::vector<std::unique_ptr<OperatorBase>>::iterator>>
FusedOpIntervals(
NgraphOpIntervals(
std::vector<std::unique_ptr<paddle::framework::OperatorBase>>* ops);
explicit FusedOperator(
explicit NgraphOperator(
const ProgramDesc& prog, size_t block_id,
std::vector<std::unique_ptr<OperatorBase>>::iterator start,
std::vector<std::unique_ptr<OperatorBase>>::iterator end,
......@@ -64,4 +62,3 @@ class FusedOperator : public OperatorBase {
};
} // namespace framework
} // namespace paddle
#endif
......@@ -44,9 +44,10 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
argument->SetMainProgram(program.release());
} else if (argument->model_program_path_valid() &&
argument->model_params_path_valid()) {
auto program =
LoadModel(argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr(), place, argument->model_from_memory());
auto program = LoadModel(
argument->model_program_path(), argument->model_params_path(),
argument->scope_ptr(), place,
argument->model_from_memory_valid() && argument->model_from_memory());
argument->SetMainProgram(program.release());
} else {
PADDLE_THROW(
......
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor)
set(INFERENCE_EXTRA_DEPS paddle_inference_api paddle_fluid_api ir_pass_manager analysis_predictor benchmark)
if(WITH_GPU AND TENSORRT_FOUND)
set(INFERENCE_EXTRA_DEPS ${INFERENCE_EXTRA_DEPS} analysis ${analysis_deps} ir_pass_manager analysis_predictor)
......
......@@ -30,8 +30,10 @@
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/inference/utils/benchmark.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_string(model_name, "", "model name");
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_int32(batch_size, 1, "batch size.");
......@@ -40,6 +42,8 @@ DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
DEFINE_bool(use_analysis, true,
"Running the inference program in analysis mode.");
DEFINE_bool(record_benchmark, false,
"Record benchmark after profiling the model");
DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads);
......@@ -192,8 +196,16 @@ void TestOneThreadPrediction(
predictor->Run(inputs[j], outputs, batch_size);
}
}
PrintTime(batch_size, num_times, 1, 0, run_timer.toc() / num_times,
inputs.size());
double latency = run_timer.toc() / num_times;
PrintTime(batch_size, num_times, 1, 0, latency, inputs.size());
if (FLAGS_record_benchmark) {
Benchmark benchmark;
benchmark.SetName(FLAGS_model_name);
benchmark.SetBatchSize(batch_size);
benchmark.SetLatency(latency);
benchmark.PersistToFile("benchmark_record.txt");
}
}
}
......
......@@ -135,6 +135,9 @@ TEST(TensorRT_resnext50, compare) {
TEST(TensorRT_resnext50, profile) {
std::string model_dir = FLAGS_infer_model + "/resnext50";
// Set FLAGS_record_benchmark to true to record benchmark to file.
// FLAGS_record_benchmark=true;
FLAGS_model_name = "resnext50";
profile(model_dir, /* use_analysis */ true, FLAGS_use_tensorrt);
}
......
......@@ -30,7 +30,7 @@ std::string Benchmark::SerializeToString() const {
ss << '\n';
ss << name_ << "\t";
ss << batch_size_ << "\t";
ss << batch_size_ << "\t\t";
ss << num_threads_ << "\t";
ss << latency_ << "\t";
ss << 1000.0 / latency_;
......
......@@ -26,9 +26,6 @@ DEFINE_string(model_dir, "", "model directory");
DEFINE_string(model_program_path, "", "model program path");
DEFINE_string(model_params_path, "", "model params path");
USE_PASS(graph_viz_pass);
USE_PASS(graph_to_program_pass);
using paddle::inference::analysis::Argument;
namespace paddle {
......@@ -40,7 +37,6 @@ void Visualizer::SetArgument(Argument *argument) { argument_ = argument; }
bool Visualizer::Run() {
paddle::framework::InitDevices(false);
paddle::inference::analysis::Analyzer().Run(argument_);
return true;
}
......@@ -77,7 +73,7 @@ int main(int argc, char *argv[]) {
// Only 1 pass, default filename is 0_ir_origin.dot
// For more details, looking for paddle::inference::analysis::IRPassManager
argument.SetIrAnalysisPasses({"graph_viz_pass"});
argument.SetIrAnalysisPasses({"infer_clean_graph_pass", "graph_viz_pass"});
std::unique_ptr<paddle::framework::Scope> scope{
new paddle::framework::Scope()};
......@@ -90,3 +86,7 @@ int main(int argc, char *argv[]) {
return 0;
}
USE_PASS(infer_clean_graph_pass);
USE_PASS(graph_viz_pass);
USE_PASS(graph_to_program_pass);
......@@ -301,23 +301,22 @@ template <typename T>
struct GeluFunctor : public BaseActivationFunctor<T> {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
auto temp =
((x * static_cast<T>(M_SQRT1_2)).erf()).template cast<T>().eval();
auto temp = (x * static_cast<T>(M_SQRT1_2)).erf();
out.device(d) = x * static_cast<T>(0.5) * (static_cast<T>(1) + temp);
}
};
template <typename T>
struct GeluGradFunctor : BaseActivationFunctor<T> {
bool Inplace() const { return IsInplace("gelu"); }
template <typename Device, typename X, typename Out, typename dOut,
typename dX>
void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
auto temp = (static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
((-static_cast<T>(0.5) * x.square()).exp()))
.template cast<T>()
.eval();
dx.device(d) = dout * (out / x + temp);
auto first = static_cast<T>(0.5) *
(static_cast<T>(1) + ((x * static_cast<T>(M_SQRT1_2)).erf()));
auto second = static_cast<T>(0.5 * M_2_SQRTPI * M_SQRT1_2) * x *
(-static_cast<T>(0.5) * x.square()).exp();
dx.device(d) = dout * (first + second);
}
};
......
......@@ -158,7 +158,7 @@ ChannelQueuePtr BRPCClient::GetChannel(const std::string& ep) {
for (int i = 0; i < FLAGS_brpc_channel_num; ++i) {
std::shared_ptr<ChannelContext> c(new ChannelContext());
if (c->channel.Init(ep.c_str(), &options) != 0) {
LOG(ERROR) << "Fail to initialize channel";
LOG(FATAL) << "Fail to initialize channel";
return nullptr;
}
......
......@@ -390,8 +390,7 @@ void GRPCClient::Proceed() {
VLOG(3) << c->GetVarHandlePtr()->String() << " process";
c->Process();
} else if (c->status_.error_code() == grpc::StatusCode::DEADLINE_EXCEEDED) {
// FIXME(gongwb): parse error_details?
LOG(ERROR) << c->GetVarHandlePtr()->String()
LOG(FATAL) << c->GetVarHandlePtr()->String()
<< " meets grpc error, error_code:" << c->status_.error_code()
<< " error_message:" << c->status_.error_message()
<< " error_details:" << c->status_.error_details();
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册