Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0bc5a122
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
0bc5a122
编写于
10月 12, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine gru_unit_op by optional bias
上级
1cabdb87
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
69 addition
and
35 deletion
+69
-35
paddle/operators/gru_unit_op.cc
paddle/operators/gru_unit_op.cc
+23
-21
paddle/operators/gru_unit_op.h
paddle/operators/gru_unit_op.h
+13
-7
python/paddle/v2/framework/tests/test_gru_unit_op.py
python/paddle/v2/framework/tests/test_gru_unit_op.py
+33
-7
未找到文件。
paddle/operators/gru_unit_op.cc
浏览文件 @
0bc5a122
...
...
@@ -31,8 +31,6 @@ class GRUUnitOp : public framework::OperatorWithKernel {
"Input(%s) of GRUUnitOp should not be null."
,
"HiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(%s) of GRUUnitOp should not be null."
,
"Weight"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(%s) of GRUUnitOp should not be null."
,
"Bias"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Gate"
),
"Output(%s) of GRUUnitOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ResetHiddenPrev"
),
...
...
@@ -43,14 +41,11 @@ class GRUUnitOp : public framework::OperatorWithKernel {
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
hidden_prev_dims
=
ctx
->
GetInputDim
(
"HiddenPrev"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
batch_size
=
input_dims
[
0
];
int
input_size
=
input_dims
[
1
];
int
frame_size
=
hidden_prev_dims
[
1
];
int
weight_height
=
weight_dims
[
0
];
int
weight_width
=
weight_dims
[
1
];
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
input_size
,
frame_size
*
3
,
"The input_size must be 3 times of frame_size in GRUUnitOp."
);
...
...
@@ -60,10 +55,16 @@ class GRUUnitOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
weight_width
,
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
}
ctx
->
SetOutputDim
(
"Gate"
,
{
batch_size
,
frame_size
*
3
});
ctx
->
SetOutputDim
(
"ResetHiddenPrev"
,
{
batch_size
,
frame_size
});
ctx
->
SetOutputDim
(
"Hidden"
,
{
batch_size
,
frame_size
});
...
...
@@ -139,8 +140,6 @@ class GRUUnitGradOp : public framework::OperatorWithKernel {
"HiddenPrev"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Weight"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Bias"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Gate"
),
"Input(%s) of GRUUnitGradOp should not be null."
,
"Gate"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"ResetHiddenPrev"
),
...
...
@@ -160,14 +159,11 @@ class GRUUnitGradOp : public framework::OperatorWithKernel {
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
hidden_prev_dims
=
ctx
->
GetInputDim
(
"HiddenPrev"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
// int batch_size = input_dims[0];
int
input_size
=
input_dims
[
1
];
int
frame_size
=
hidden_prev_dims
[
1
];
int
weight_height
=
weight_dims
[
0
];
int
weight_width
=
weight_dims
[
1
];
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
input_size
,
frame_size
*
3
,
"The input_size must be 3 times of frame_size in GRUUnitOp."
);
...
...
@@ -177,10 +173,19 @@ class GRUUnitGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
weight_width
,
frame_size
*
3
,
"The shape of Weight matrix must be [frame_size, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
auto
bias
=
Input
(
"Bias"
);
if
(
bias
!=
framework
::
kEmptyVarName
)
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
int
bias_height
=
bias_dims
[
0
];
int
bias_width
=
bias_dims
[
1
];
PADDLE_ENFORCE_EQ
(
bias_height
,
1
,
"The shape of Bias must be [1, frame_size * 3]."
);
PADDLE_ENFORCE_EQ
(
bias_width
,
frame_size
*
3
,
"The shape of Bias must be [1, frame_size * 3]."
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
}
auto
input_grad_name
=
framework
::
GradVarName
(
"Input"
);
if
(
ctx
->
HasOutput
(
input_grad_name
))
ctx
->
SetOutputDim
(
input_grad_name
,
input_dims
);
...
...
@@ -190,9 +195,6 @@ class GRUUnitGradOp : public framework::OperatorWithKernel {
auto
weight_grad_name
=
framework
::
GradVarName
(
"Weight"
);
if
(
ctx
->
HasOutput
(
weight_grad_name
))
ctx
->
SetOutputDim
(
weight_grad_name
,
weight_dims
);
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
ctx
->
SetOutputDim
(
bias_grad_name
,
bias_dims
);
}
};
...
...
paddle/operators/gru_unit_op.h
浏览文件 @
0bc5a122
...
...
@@ -64,16 +64,20 @@ class GRUUnitKernel : public framework::OpKernel<T> {
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input
);
auto
h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev
);
auto
b
=
EigenMatrix
<
T
>::
From
(
*
bias
);
auto
g
=
EigenMatrix
<
T
>::
From
(
*
gate
);
auto
r_h_p
=
EigenMatrix
<
T
>::
From
(
*
reset_hidden_prev
);
auto
h
=
EigenMatrix
<
T
>::
From
(
*
hidden
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
// calculate unactivated gate outputs
g
.
device
(
place
)
=
x
+
b
.
reshape
(
Eigen
::
array
<
int
,
2
>
({{
1
,
frame_size
*
3
}}))
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({{
batch_size
,
1
}}));
if
(
bias
)
{
auto
b
=
EigenMatrix
<
T
>::
From
(
*
bias
);
g
.
device
(
place
)
=
x
+
b
.
reshape
(
Eigen
::
array
<
int
,
2
>
({{
1
,
frame_size
*
3
}}))
.
broadcast
(
Eigen
::
array
<
int
,
2
>
({{
batch_size
,
1
}}));
}
else
{
g
.
device
(
place
)
=
x
;
}
const
T
*
hidden_prev_data
=
hidden_prev
->
data
<
T
>
();
const
T
*
weight_data
=
weight
->
data
<
T
>
();
T
*
gate_data
=
gate
->
data
<
T
>
();
...
...
@@ -145,7 +149,6 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
hidden_prev_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
weight_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
bias_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
gate_grad
;
gate_grad
.
mutable_data
<
T
>
(
input
->
dims
(),
context
.
GetPlace
());
Tensor
reset_hidden_prev_grad
;
...
...
@@ -168,7 +171,6 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
auto
d_h
=
EigenMatrix
<
T
>::
From
(
*
hidden_grad
);
auto
d_x
=
EigenMatrix
<
T
>::
From
(
*
input_grad
);
auto
d_h_p
=
EigenMatrix
<
T
>::
From
(
*
hidden_prev_grad
);
auto
d_b
=
EigenMatrix
<
T
>::
From
(
*
bias_grad
);
auto
d_g
=
EigenMatrix
<
T
>::
From
(
gate_grad
);
auto
d_r_h_p
=
EigenMatrix
<
T
>::
From
(
reset_hidden_prev_grad
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
...
...
@@ -216,7 +218,11 @@ class GRUUnitGradKernel : public framework::OpKernel<T> {
// backward for input
d_x
.
device
(
place
)
=
d_g
;
// backward for bias
d_b
.
device
(
place
)
=
d_g
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_b
=
EigenMatrix
<
T
>::
From
(
*
bias_grad
);
d_b
.
device
(
place
)
=
d_g
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
}
};
...
...
python/paddle/v2/framework/tests/test_gru_unit_op.py
浏览文件 @
0bc5a122
...
...
@@ -28,6 +28,8 @@ def relu(x):
class
TestGRUUnitOp
(
OpTest
):
batch_size
=
3
frame_size
=
5
activate
=
{
GRUActivationType
.
identity
:
identity
,
GRUActivationType
.
sigmoid
:
sigmoid
,
...
...
@@ -35,9 +37,9 @@ class TestGRUUnitOp(OpTest):
GRUActivationType
.
relu
:
relu
,
}
def
set
Up
(
self
):
batch_size
=
3
frame_size
=
5
def
set
_inputs
(
self
):
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
self
.
op_type
=
'gru_unit'
self
.
inputs
=
{
'Input'
:
np
.
random
.
uniform
(
...
...
@@ -47,18 +49,21 @@ class TestGRUUnitOp(OpTest):
'Weight'
:
np
.
random
.
uniform
(
-
1.
/
math
.
sqrt
(
frame_size
),
1.
/
math
.
sqrt
(
frame_size
),
(
frame_size
,
frame_size
*
3
)).
astype
(
'float32'
),
'Bias'
:
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float32'
)
}
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
tanh
,
'gate_activation'
:
GRUActivationType
.
sigmoid
}
def
set_outputs
(
self
):
# GRU calculations
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
x
=
self
.
inputs
[
'Input'
]
h_p
=
self
.
inputs
[
'HiddenPrev'
]
w
=
self
.
inputs
[
'Weight'
]
b
=
self
.
inputs
[
'Bias'
]
b
=
self
.
inputs
[
'Bias'
]
if
self
.
inputs
.
has_key
(
'Bias'
)
else
np
.
zeros
(
(
1
,
frame_size
*
3
))
g
=
x
+
np
.
tile
(
b
,
(
batch_size
,
1
))
w_u_r
=
w
.
flatten
()[:
frame_size
*
frame_size
*
2
].
reshape
(
(
frame_size
,
frame_size
*
2
))
...
...
@@ -73,12 +78,33 @@ class TestGRUUnitOp(OpTest):
g
[:,
frame_size
*
2
:])
g
=
np
.
hstack
((
u_r
,
c
))
h
=
u
*
h_p
+
(
1
-
u
)
*
c
self
.
outputs
=
{
'Gate'
:
g
,
'ResetHiddenPrev'
:
r_h_p
,
'Hidden'
:
h
}
def
setUp
(
self
):
self
.
set_inputs
()
self
.
set_outputs
()
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'Input'
,
'HiddenPrev'
,
'Weight'
],
[
'Hidden'
],
max_relative_error
=
0.007
)
class
TestGRUUnitOpWithBias
(
TestGRUUnitOp
):
def
set_inputs
(
self
):
batch_size
=
self
.
batch_size
frame_size
=
self
.
frame_size
super
(
TestGRUUnitOpWithBias
,
self
).
set_inputs
()
self
.
inputs
[
'Bias'
]
=
np
.
random
.
uniform
(
-
0.1
,
0.1
,
(
1
,
frame_size
*
3
)).
astype
(
'float32'
)
self
.
attrs
=
{
'activation'
:
GRUActivationType
.
identity
,
'gate_activation'
:
GRUActivationType
.
sigmoid
}
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'Input'
,
'HiddenPrev'
,
'Weight'
,
'Bias'
],
[
'Hidden'
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录