Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0a3d768c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0a3d768c
编写于
1月 29, 2022
作者:
S
shangliang Xu
提交者:
GitHub
1月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[dev] update assigner and tood_head (#5169)
上级
6ee18c2b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
103 addition
and
29 deletion
+103
-29
configs/tood/_base_/tood_reader.yml
configs/tood/_base_/tood_reader.yml
+8
-7
ppdet/data/transform/batch_operators.py
ppdet/data/transform/batch_operators.py
+59
-3
ppdet/modeling/assigners/atss_assigner.py
ppdet/modeling/assigners/atss_assigner.py
+20
-10
ppdet/modeling/assigners/task_aligned_assigner.py
ppdet/modeling/assigners/task_aligned_assigner.py
+10
-8
ppdet/modeling/heads/tood_head.py
ppdet/modeling/heads/tood_head.py
+6
-1
未找到文件。
configs/tood/_base_/tood_reader.yml
浏览文件 @
0a3d768c
worker_num
:
4
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomFlip
:
{
prob
:
0.5
}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
true
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
-
Decode
:
{}
-
RandomFlip
:
{
prob
:
0.5
}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
true
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadBatch
:
{
pad_to_stride
:
32
}
-
PadBatch
:
{
pad_to_stride
:
32
}
-
PadGT
:
{}
batch_size
:
4
shuffle
:
true
drop_last
:
true
collate_batch
:
fals
e
collate_batch
:
tru
e
use_shared_memory
:
true
...
...
ppdet/data/transform/batch_operators.py
浏览文件 @
0a3d768c
...
...
@@ -47,6 +47,7 @@ __all__ = [
'PadMaskBatch'
,
'Gt2GFLTarget'
,
'Gt2CenterNetTarget'
,
'PadGT'
,
]
...
...
@@ -72,13 +73,15 @@ class PadBatch(BaseOperator):
coarsest_stride
=
self
.
pad_to_stride
# multi scale input is nested list
if
isinstance
(
samples
,
typing
.
Sequence
)
and
len
(
samples
)
>
0
and
isinstance
(
samples
[
0
],
typing
.
Sequence
):
if
isinstance
(
samples
,
typing
.
Sequence
)
and
len
(
samples
)
>
0
and
isinstance
(
samples
[
0
],
typing
.
Sequence
):
inner_samples
=
samples
[
0
]
else
:
inner_samples
=
samples
max_shape
=
np
.
array
(
[
data
[
'image'
].
shape
for
data
in
inner_samples
]).
max
(
axis
=
0
)
max_shape
=
np
.
array
(
[
data
[
'image'
].
shape
for
data
in
inner_samples
]).
max
(
axis
=
0
)
if
coarsest_stride
>
0
:
max_shape
[
1
]
=
int
(
np
.
ceil
(
max_shape
[
1
]
/
coarsest_stride
)
*
coarsest_stride
)
...
...
@@ -1066,3 +1069,56 @@ class Gt2CenterNetTarget(BaseOperator):
sample
[
'size'
]
=
wh
sample
[
'offset'
]
=
reg
return
sample
@
register_op
class
PadGT
(
BaseOperator
):
"""
Pad 0 to `gt_class`, `gt_bbox`, `gt_score`...
The num_max_boxes is the largest for batch.
Args:
return_gt_mask (bool): If true, return `pad_gt_mask`,
1 means bbox, 0 means no bbox.
"""
def
__init__
(
self
,
return_gt_mask
=
True
):
super
(
PadGT
,
self
).
__init__
()
self
.
return_gt_mask
=
return_gt_mask
def
__call__
(
self
,
samples
,
context
=
None
):
num_max_boxes
=
max
([
len
(
s
[
'gt_bbox'
])
for
s
in
samples
])
for
sample
in
samples
:
if
self
.
return_gt_mask
:
sample
[
'pad_gt_mask'
]
=
np
.
zeros
(
(
num_max_boxes
,
1
),
dtype
=
np
.
float32
)
if
num_max_boxes
==
0
:
continue
num_gt
=
len
(
sample
[
'gt_bbox'
])
pad_gt_class
=
np
.
zeros
((
num_max_boxes
,
1
),
dtype
=
np
.
int32
)
pad_gt_bbox
=
np
.
zeros
((
num_max_boxes
,
4
),
dtype
=
np
.
float32
)
if
num_gt
>
0
:
pad_gt_class
[:
num_gt
]
=
sample
[
'gt_class'
]
pad_gt_bbox
[:
num_gt
]
=
sample
[
'gt_bbox'
]
sample
[
'gt_class'
]
=
pad_gt_class
sample
[
'gt_bbox'
]
=
pad_gt_bbox
# pad_gt_mask
if
'pad_gt_mask'
in
sample
:
sample
[
'pad_gt_mask'
][:
num_gt
]
=
1
# gt_score
if
'gt_score'
in
sample
:
pad_gt_score
=
np
.
zeros
((
num_max_boxes
,
1
),
dtype
=
np
.
float32
)
if
num_gt
>
0
:
pad_gt_score
[:
num_gt
]
=
sample
[
'gt_score'
]
sample
[
'gt_score'
]
=
pad_gt_score
if
'is_crowd'
in
sample
:
pad_is_crowd
=
np
.
zeros
((
num_max_boxes
,
1
),
dtype
=
np
.
int32
)
if
num_gt
>
0
:
pad_is_crowd
[:
num_gt
]
=
sample
[
'is_crowd'
]
sample
[
'is_crowd'
]
=
pad_is_crowd
if
'difficult'
in
sample
:
pad_diff
=
np
.
zeros
((
num_max_boxes
,
1
),
dtype
=
np
.
int32
)
if
num_gt
>
0
:
pad_diff
[:
num_gt
]
=
sample
[
'difficult'
]
sample
[
'difficult'
]
=
pad_diff
return
samples
ppdet/modeling/assigners/atss_assigner.py
浏览文件 @
0a3d768c
...
...
@@ -23,10 +23,13 @@ import paddle.nn.functional as F
from
ppdet.core.workspace
import
register
from
..ops
import
iou_similarity
from
..bbox_utils
import
iou_similarity
as
batch_iou_similarity
from
..bbox_utils
import
bbox_center
from
.utils
import
(
pad_gt
,
check_points_inside_bboxes
,
compute_max_iou_anchor
,
from
.utils
import
(
check_points_inside_bboxes
,
compute_max_iou_anchor
,
compute_max_iou_gt
)
__all__
=
[
'ATSSAssigner'
]
@
register
class
ATSSAssigner
(
nn
.
Layer
):
...
...
@@ -77,8 +80,10 @@ class ATSSAssigner(nn.Layer):
num_anchors_list
,
gt_labels
,
gt_bboxes
,
pad_gt_mask
,
bg_index
,
gt_scores
=
None
):
gt_scores
=
None
,
pred_bboxes
=
None
):
r
"""This code is based on
https://github.com/fcjian/TOOD/blob/master/mmdet/core/bbox/assigners/atss_assigner.py
...
...
@@ -99,18 +104,18 @@ class ATSSAssigner(nn.Layer):
anchor_bboxes (Tensor, float32): pre-defined anchors, shape(L, 4),
"xmin, xmax, ymin, ymax" format
num_anchors_list (List): num of anchors in each level
gt_labels (Tensor|List[Tensor], int64): Label of gt_bboxes, shape(B, n, 1)
gt_bboxes (Tensor|List[Tensor], float32): Ground truth bboxes, shape(B, n, 4)
gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
bg_index (int): background index
gt_scores (Tensor|
List[Tensor]|
None, float32) Score of gt_bboxes,
gt_scores (Tensor|None, float32) Score of gt_bboxes,
shape(B, n, 1), if None, then it will initialize with one_hot label
pred_bboxes (Tensor, float32, optional): predicted bounding boxes, shape(B, L, 4)
Returns:
assigned_labels (Tensor): (B, L)
assigned_bboxes (Tensor): (B, L, 4)
assigned_scores (Tensor): (B, L, C)
assigned_scores (Tensor): (B, L, C)
, if pred_bboxes is not None, then output ious
"""
gt_labels
,
gt_bboxes
,
pad_gt_scores
,
pad_gt_mask
=
pad_gt
(
gt_labels
,
gt_bboxes
,
gt_scores
)
assert
gt_labels
.
ndim
==
gt_bboxes
.
ndim
and
\
gt_bboxes
.
ndim
==
3
...
...
@@ -198,9 +203,14 @@ class ATSSAssigner(nn.Layer):
assigned_bboxes
=
assigned_bboxes
.
reshape
([
batch_size
,
num_anchors
,
4
])
assigned_scores
=
F
.
one_hot
(
assigned_labels
,
self
.
num_classes
)
if
gt_scores
is
not
None
:
if
pred_bboxes
is
not
None
:
# assigned iou
ious
=
batch_iou_similarity
(
gt_bboxes
,
pred_bboxes
)
*
mask_positive
ious
=
ious
.
max
(
axis
=-
2
).
unsqueeze
(
-
1
)
assigned_scores
*=
ious
elif
gt_scores
is
not
None
:
gather_scores
=
paddle
.
gather
(
pad_
gt_scores
.
flatten
(),
assigned_gt_index
.
flatten
(),
axis
=
0
)
gt_scores
.
flatten
(),
assigned_gt_index
.
flatten
(),
axis
=
0
)
gather_scores
=
gather_scores
.
reshape
([
batch_size
,
num_anchors
])
gather_scores
=
paddle
.
where
(
mask_positive_sum
>
0
,
gather_scores
,
paddle
.
zeros_like
(
gather_scores
))
...
...
ppdet/modeling/assigners/task_aligned_assigner.py
浏览文件 @
0a3d768c
...
...
@@ -22,9 +22,11 @@ import paddle.nn.functional as F
from
ppdet.core.workspace
import
register
from
..bbox_utils
import
iou_similarity
from
.utils
import
(
pad_gt
,
gather_topk_anchors
,
check_points_inside_bboxes
,
from
.utils
import
(
gather_topk_anchors
,
check_points_inside_bboxes
,
compute_max_iou_anchor
)
__all__
=
[
'TaskAlignedAssigner'
]
@
register
class
TaskAlignedAssigner
(
nn
.
Layer
):
...
...
@@ -43,8 +45,10 @@ class TaskAlignedAssigner(nn.Layer):
pred_scores
,
pred_bboxes
,
anchor_points
,
num_anchors_list
,
gt_labels
,
gt_bboxes
,
pad_gt_mask
,
bg_index
,
gt_scores
=
None
):
r
"""This code is based on
...
...
@@ -61,20 +65,18 @@ class TaskAlignedAssigner(nn.Layer):
pred_scores (Tensor, float32): predicted class probability, shape(B, L, C)
pred_bboxes (Tensor, float32): predicted bounding boxes, shape(B, L, 4)
anchor_points (Tensor, float32): pre-defined anchors, shape(L, 2), "cxcy" format
gt_labels (Tensor|List[Tensor], int64): Label of gt_bboxes, shape(B, n, 1)
gt_bboxes (Tensor|List[Tensor], float32): Ground truth bboxes, shape(B, n, 4)
num_anchors_list (List): num of anchors in each level, shape(L)
gt_labels (Tensor, int64|int32): Label of gt_bboxes, shape(B, n, 1)
gt_bboxes (Tensor, float32): Ground truth bboxes, shape(B, n, 4)
pad_gt_mask (Tensor, float32): 1 means bbox, 0 means no bbox, shape(B, n, 1)
bg_index (int): background index
gt_scores (Tensor|List[Tensor]|None, float32) Score of gt_bboxes,
shape(B, n, 1), if None, then it will initialize with one_hot label
gt_scores (Tensor|None, float32) Score of gt_bboxes, shape(B, n, 1)
Returns:
assigned_labels (Tensor): (B, L)
assigned_bboxes (Tensor): (B, L, 4)
assigned_scores (Tensor): (B, L, C)
"""
assert
pred_scores
.
ndim
==
pred_bboxes
.
ndim
gt_labels
,
gt_bboxes
,
pad_gt_scores
,
pad_gt_mask
=
pad_gt
(
gt_labels
,
gt_bboxes
,
gt_scores
)
assert
gt_labels
.
ndim
==
gt_bboxes
.
ndim
and
\
gt_bboxes
.
ndim
==
3
...
...
ppdet/modeling/heads/tood_head.py
浏览文件 @
0a3d768c
...
...
@@ -286,9 +286,11 @@ class TOODHead(nn.Layer):
return
loss
def
get_loss
(
self
,
head_outs
,
gt_meta
):
pred_scores
,
pred_bboxes
,
anchors
,
num_anchors_list
,
stride_tensor_list
=
head_outs
pred_scores
,
pred_bboxes
,
anchors
,
\
num_anchors_list
,
stride_tensor_list
=
head_outs
gt_labels
=
gt_meta
[
'gt_class'
]
gt_bboxes
=
gt_meta
[
'gt_bbox'
]
pad_gt_mask
=
gt_meta
[
'pad_gt_mask'
]
# label assignment
if
gt_meta
[
'epoch_id'
]
<
self
.
static_assigner_epoch
:
assigned_labels
,
assigned_bboxes
,
assigned_scores
=
self
.
static_assigner
(
...
...
@@ -296,6 +298,7 @@ class TOODHead(nn.Layer):
num_anchors_list
,
gt_labels
,
gt_bboxes
,
pad_gt_mask
,
bg_index
=
self
.
num_classes
)
alpha_l
=
0.25
else
:
...
...
@@ -303,8 +306,10 @@ class TOODHead(nn.Layer):
pred_scores
.
detach
(),
pred_bboxes
.
detach
()
*
stride_tensor_list
,
bbox_center
(
anchors
),
num_anchors_list
,
gt_labels
,
gt_bboxes
,
pad_gt_mask
,
bg_index
=
self
.
num_classes
)
alpha_l
=
-
1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录