Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
08cb472a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08cb472a
编写于
1月 19, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Simplify the implementation.
上级
fc581bc5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
68 addition
and
104 deletion
+68
-104
paddle/operators/sequence_reshape_op.cc
paddle/operators/sequence_reshape_op.cc
+18
-12
paddle/operators/sequence_reshape_op.cu
paddle/operators/sequence_reshape_op.cu
+9
-2
paddle/operators/sequence_reshape_op.h
paddle/operators/sequence_reshape_op.h
+25
-82
python/paddle/v2/fluid/tests/test_sequence_reshape.py
python/paddle/v2/fluid/tests/test_sequence_reshape.py
+16
-8
未找到文件。
paddle/operators/sequence_reshape_op.cc
浏览文件 @
08cb472a
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/sequence_reshape_op.h"
#include "paddle/framework/ddim.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -26,9 +27,11 @@ class SequenceReshapeOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceReshapeOp should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_numel
=
product
(
x_dims
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2U
,
"Rank of Input(X) should be 2."
);
int
dimension
=
ctx
->
Attrs
().
Get
<
int
>
(
"new_dim"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
static_cast
<
int64_t
>
(
dimension
)});
int
new_dim
=
ctx
->
Attrs
().
Get
<
int
>
(
"new_dim"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_numel
/
new_dim
,
static_cast
<
int64_t
>
(
new_dim
)});
}
};
...
...
@@ -54,16 +57,16 @@ example will help to illustrate the function of this operator:
x is a LoDTensor:
x.lod = [[0, 2, 6]]
x.data = [[
0.1, 0.2], [0.3, 0.
4],
[
0.5, 0.6], [0.7, 0.8], [0.9, 1.0], [1.1, 1.
2]]
x.data = [[
1, 2], [3,
4],
[
5, 6], [7, 8], [9, 10], [11, 1
2]]
x.dims = [6, 2]
set new_dim = 4
then out is a LoDTensor:
out.lod = [[0,
1,
3]]
out.data = [[
0.1, 0.2, 0.3, 0.
4],
[
0.5, 0.6, 0.7, 0.8], [0.9, 1.0, 1.1, 1.
2]]
out.lod = [[0,
1,
3]]
out.data = [[
1, 2, 3,
4],
[
5, 6, 7, 8], [9, 10, 11, 1
2]]
out.dims = [3, 4]
Currently, only 1-level LoDTensor is supported and please make sure (original
...
...
@@ -82,8 +85,6 @@ class SequenceReshapeGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) of SequenceReshapeGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input(Out) of SequenceReshapeGradOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequenceReshapeGradOp should not be null."
);
...
...
@@ -101,7 +102,6 @@ class SequenceReshapeGradOpMaker : public framework::SingleGradOpDescMaker {
auto
*
op_desc_ptr
=
new
framework
::
OpDesc
();
op_desc_ptr
->
SetType
(
"sequence_reshape_grad"
);
op_desc_ptr
->
SetInput
(
"X"
,
Input
(
"X"
));
op_desc_ptr
->
SetInput
(
"Out"
,
Output
(
"Out"
));
op_desc_ptr
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
op_desc_ptr
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op_desc_ptr
->
SetAttrMap
(
Attrs
());
...
...
@@ -118,7 +118,13 @@ REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
REGISTER_OPERATOR
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradOp
);
REGISTER_OP_CPU_KERNEL
(
sequence_reshape
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
);
paddle/operators/sequence_reshape_op.cu
浏览文件 @
08cb472a
...
...
@@ -17,7 +17,14 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
SequenceReshapeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
);
REGISTER_OP_CUDA_KERNEL
(
sequence_reshape_grad
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
SequenceReshapeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
);
paddle/operators/sequence_reshape_op.h
浏览文件 @
08cb472a
...
...
@@ -28,8 +28,6 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
out_width
=
context
.
Attr
<
int
>
(
"new_dim"
);
const
T
*
p_in_data
=
in
->
data
<
T
>
();
auto
in_dims
=
in
->
dims
();
int64_t
in_width
=
in_dims
[
1
];
auto
&
in_lod
=
in
->
lod
();
...
...
@@ -43,53 +41,29 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
auto
in_lod_l0
=
in_lod
[
0
];
int
seq_num
=
in_lod_l0
.
size
()
-
1
;
auto
&
out_lod
=
*
out
->
mutable_lod
();
out_lod
.
resize
(
1
);
out_lod
[
0
].
clear
();
out_lod
[
0
].
push_back
(
0
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
seq_len
=
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
]
;
size_t
offset
=
0
;
offset
=
(
seq_len
*
in_width
)
/
out_width
;
PADDLE_ENFORCE_EQ
(
offset
*
out_width
,
seq_len
*
in_width
,
"Please make sure (sequence_length * dimension) can be "
"divided by new_dim with no remainder for each "
"sequence. The %dth sequence is invalid."
,
i
+
1
);
PADDLE_ENFORCE_GT
(
offset
,
0
,
"Illegal operation, length of the %dth sequence become "
"to 0 after reshaped."
,
i
+
1
);
out_lod
[
0
].
push_back
(
out_lod
[
0
].
back
()
+
offset
);
if
(
in_width
==
out_width
)
{
out
->
set_lod
(
in
->
lod
()
);
}
else
{
auto
&
out_lod
=
*
out
->
mutable_lod
(
);
out_lod
.
resize
(
1
);
out_lod
[
0
].
clear
()
;
out_lod
[
0
].
push_back
(
0
)
;
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
seq_len
=
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
];
size_t
offset
=
0
;
offset
=
(
seq_len
*
in_width
)
/
out_width
;
PADDLE_ENFORCE_EQ
(
offset
*
out_width
,
seq_len
*
in_width
,
"Please make sure (sequence_length * dimension) can "
"be divided by new_dim with no remainder for each "
"sequence. The %dth sequence is invalid."
,
i
+
1
);
out_lod
[
0
].
push_back
(
out_lod
[
0
].
back
()
+
offset
);
}
}
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
Resize
({
static_cast
<
int64_t
>
(
out_lod
[
0
].
back
()),
out_width
});
T
*
p_out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
set_constant
(
context
.
device_context
(),
out
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
in_offset
=
in_lod_l0
[
i
]
*
in_width
;
size_t
out_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
in_count
=
(
in_lod_l0
[
i
+
1
]
-
in_lod_l0
[
i
])
*
in_width
;
size_t
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
in_count
,
out_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_in_data
+
in_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_out_data
+
out_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_in_data
+
in_offset
,
bytes
,
dev_ctx
.
stream
());
#endif
}
}
framework
::
Copy
(
*
in
,
context
.
GetPlace
(),
out
);
out
->
Resize
({
static_cast
<
int64_t
>
(
out
->
lod
()[
0
].
back
()),
out_width
});
}
};
...
...
@@ -98,45 +72,14 @@ class SequenceReshapeGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
"Out"
);
auto
*
out_grad_tensor_ptr
=
auto
*
outg_tensor_ptr
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x
_grad
_tensor_ptr
=
auto
*
x
g
_tensor_ptr
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
p_x_grad_data
=
x_grad_tensor_ptr
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
*
p_out_grad_data
=
out_grad_tensor_ptr
->
data
<
T
>
();
auto
&
x_lod
=
x_tensor_ptr
->
lod
();
int
seq_num
=
x_lod
[
0
].
size
()
-
1
;
int
x_width
=
x_tensor_ptr
->
dims
()[
1
];
auto
&
out_lod
=
out_tensor_ptr
->
lod
();
int
out_width
=
out_tensor_ptr
->
dims
()[
1
];
math
::
set_constant
(
context
.
device_context
(),
x_grad_tensor_ptr
,
0.0
f
);
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
size_t
src_offset
=
out_lod
[
0
][
i
]
*
out_width
;
size_t
dst_offset
=
x_lod
[
0
][
i
]
*
x_width
;
size_t
src_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
out_width
;
size_t
dst_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
;
size_t
bytes
=
sizeof
(
T
)
*
std
::
min
(
src_count
,
dst_count
);
if
(
platform
::
is_cpu_place
(
context
.
GetPlace
()))
{
memory
::
Copy
(
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CPUPlace
>
(
context
.
GetPlace
()),
p_out_grad_data
+
src_offset
,
bytes
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_x_grad_data
+
dst_offset
,
boost
::
get
<
platform
::
CUDAPlace
>
(
context
.
GetPlace
()),
p_out_grad_data
+
src_offset
,
bytes
,
dev_ctx
.
stream
());
#endif
}
}
xg_tensor_ptr
->
mutable_data
<
T
>
(
context
.
GetPlace
());
framework
::
Copy
(
*
outg_tensor_ptr
,
context
.
GetPlace
(),
xg_tensor_ptr
);
xg_tensor_ptr
->
Resize
(
x_tensor_ptr
->
dims
());
}
};
...
...
python/paddle/v2/fluid/tests/test_sequence_reshape.py
浏览文件 @
08cb472a
...
...
@@ -40,14 +40,7 @@ class TestSequenceReshape(OpTest):
assert
int
(
offset
)
*
dimension
==
seq_len
*
x_width
out_lod
[
0
].
append
(
out_lod
[
0
][
-
1
]
+
int
(
offset
))
out
=
np
.
zeros
(
shape
=
(
out_lod
[
0
][
-
1
],
dimension
)).
astype
(
'float32'
)
for
i
in
xrange
(
len
(
x_lod
[
0
])
-
1
):
x_offset
=
x_lod
[
0
][
i
]
*
x_width
out_offset
=
out_lod
[
0
][
i
]
*
dimension
out_count
=
(
out_lod
[
0
][
i
+
1
]
-
out_lod
[
0
][
i
])
*
dimension
x_count
=
(
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
])
*
x_width
count
=
min
(
out_count
,
x_count
)
out
.
ravel
()[
out_offset
:
out_offset
+
count
]
=
x
.
ravel
()[
x_offset
:
x_offset
+
count
]
out
.
ravel
()[:]
=
x
.
ravel
()[:]
return
out
,
out_lod
def
test_check_output
(
self
):
...
...
@@ -72,5 +65,20 @@ class TestSequenceReshape_reduce(TestSequenceReshape):
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
class
TestSequenceReshape_same
(
TestSequenceReshape
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_reshape'
dimension
=
12
x_lod
=
[[
0
,
4
,
6
,
8
,
12
]]
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
12
,
12
]).
astype
(
'float32'
)
self
.
inputs
=
{
'X'
:
(
x
,
x_lod
)}
self
.
attrs
=
{
'new_dim'
:
dimension
}
out
,
out_lod
=
self
.
compute_output
(
x
,
x_lod
,
dimension
)
self
.
outputs
=
{
'Out'
:
(
out
,
out_lod
)}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录