Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
08b22cf1
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08b22cf1
编写于
9月 21, 2018
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'generator2' of
https://github.com/gongweibao/Paddle
into generator2
上级
a3019474
bee213e5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
274 addition
and
51 deletion
+274
-51
paddle/fluid/API.spec
paddle/fluid/API.spec
+6
-6
paddle/fluid/framework/details/reference_count_op_handle.h
paddle/fluid/framework/details/reference_count_op_handle.h
+28
-13
paddle/fluid/framework/details/reference_count_pass.cc
paddle/fluid/framework/details/reference_count_pass.cc
+64
-11
paddle/fluid/operators/adam_op.h
paddle/fluid/operators/adam_op.h
+31
-13
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+145
-2
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+0
-6
未找到文件。
paddle/fluid/API.spec
浏览文件 @
08b22cf1
...
...
@@ -160,6 +160,12 @@ paddle.fluid.layers.relu ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.log ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.crop ArgSpec(args=['x', 'shape', 'offsets', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.rank_loss ArgSpec(args=['label', 'left', 'right', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.elu ArgSpec(args=['x', 'alpha', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.relu6 ArgSpec(args=['x', 'threshold', 'name'], varargs=None, keywords=None, defaults=(6.0, None))
paddle.fluid.layers.pow ArgSpec(args=['x', 'factor', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.stanh ArgSpec(args=['x', 'scale_a', 'scale_b', 'name'], varargs=None, keywords=None, defaults=(0.6666666666666666, 1.7159, None))
paddle.fluid.layers.hard_sigmoid ArgSpec(args=['x', 'slope', 'offset', 'name'], varargs=None, keywords=None, defaults=(0.2, 0.5, None))
paddle.fluid.layers.swish ArgSpec(args=['x', 'beta', 'name'], varargs=None, keywords=None, defaults=(1.0, None))
paddle.fluid.layers.prelu ArgSpec(args=['x', 'mode', 'param_attr', 'name'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.flatten ArgSpec(args=['x', 'axis', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 'int64', None))
...
...
@@ -276,12 +282,6 @@ paddle.fluid.layers.softsign ArgSpec(args=[], varargs='args', keywords='kwargs',
paddle.fluid.layers.brelu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.leaky_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.soft_relu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.elu ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.relu6 ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.pow ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.stanh ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.hard_sigmoid ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.swish ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.uniform_random ArgSpec(args=['shape', 'dtype', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.layers.hard_shrink ArgSpec(args=['x', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.cumsum ArgSpec(args=['x', 'axis', 'exclusive', 'reverse'], varargs=None, keywords=None, defaults=(None, None, None))
...
...
paddle/fluid/framework/details/reference_count_op_handle.h
浏览文件 @
08b22cf1
...
...
@@ -22,6 +22,7 @@
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
...
...
@@ -46,17 +47,15 @@ class ReferenceCountOpHandle : public OpHandleBase {
const
std
::
vector
<
std
::
string
>
&
var_names
,
GarbageCollector
<
Tensor
>
*
gc
,
AtomicReferenceCountMap
*
ref_cnts
)
:
OpHandleBase
(
node
),
scope_
(
scope
),
var_names_
(
var_names
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
:
OpHandleBase
(
node
),
scope_
(
scope
),
gc_
(
gc
),
ref_cnts_
(
ref_cnts
)
{
dev_ctx_
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
if
(
IsStreamGarabageCollector
())
{
PADDLE_ENFORCE
(
cudaSetDevice
(
place
.
device
));
PADDLE_ENFORCE
(
cudaEventCreateWithFlags
(
&
event_
,
cudaEventDisableTiming
));
}
for
(
auto
&
name
:
var_names
)
AddVar
(
name
);
}
~
ReferenceCountOpHandle
()
{
...
...
@@ -69,19 +68,35 @@ class ReferenceCountOpHandle : public OpHandleBase {
std
::
string
Name
()
const
override
{
return
"reference_count"
;
}
void
AddVar
(
const
std
::
string
&
name
)
{
auto
it
=
var_names_
.
find
(
name
);
if
(
it
!=
var_names_
.
end
())
++
(
it
->
second
);
else
var_names_
[
name
]
=
1
;
}
protected:
void
RunImpl
()
override
{
auto
*
exec_scope
=
scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
std
::
vector
<
LoDTensor
*>
tensors
;
for
(
auto
&
name
:
var_names_
)
{
std
::
vector
<
Tensor
*>
tensors
;
for
(
auto
&
pair
:
var_names_
)
{
auto
&
name
=
pair
.
first
;
auto
it
=
ref_cnts_
->
find
(
name
);
if
(
it
==
ref_cnts_
->
end
())
continue
;
auto
*
var
=
exec_scope
->
FindVar
(
name
);
if
(
var
==
nullptr
||
!
var
->
IsType
<
LoDTensor
>
())
continue
;
if
(
it
->
second
.
fetch_sub
(
1
)
<=
1
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
if
(
var
==
nullptr
)
continue
;
if
(
var
->
IsType
<
LoDTensor
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
LoDTensor
>
());
}
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
if
(
it
->
second
.
fetch_sub
(
pair
.
second
)
<=
pair
.
second
)
{
tensors
.
emplace_back
(
var
->
GetMutable
<
SelectedRows
>
()
->
mutable_value
());
}
}
}
...
...
@@ -91,7 +106,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
}
private:
void
ClearTensors
(
const
std
::
vector
<
LoD
Tensor
*>
&
tensors
)
{
void
ClearTensors
(
const
std
::
vector
<
Tensor
*>
&
tensors
)
{
auto
*
gc
=
dynamic_cast
<
StreamGarbageCollector
<
Tensor
>
*>
(
gc_
);
if
(
gc
!=
nullptr
)
{
auto
compute_stream
=
dev_ctx_
->
stream
();
...
...
@@ -112,7 +127,7 @@ class ReferenceCountOpHandle : public OpHandleBase {
const
Scope
*
scope_
;
platform
::
CUDADeviceContext
*
dev_ctx_
;
std
::
vector
<
std
::
string
>
var_names_
;
std
::
unordered_map
<
std
::
string
,
int
>
var_names_
;
GarbageCollector
<
Tensor
>
*
gc_
;
// not own
AtomicReferenceCountMap
*
ref_cnts_
;
// not own
cudaEvent_t
event_
;
...
...
paddle/fluid/framework/details/reference_count_pass.cc
浏览文件 @
08b22cf1
...
...
@@ -12,6 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <queue>
#include <string>
#include <vector>
...
...
@@ -23,6 +24,25 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
ComputationOpHandle
*
FindNextComputationOpHandle
(
VarHandle
*
var_in
)
{
std
::
queue
<
VarHandleBase
*>
queue
;
queue
.
push
(
var_in
);
do
{
auto
*
var
=
queue
.
front
();
queue
.
pop
();
for
(
auto
*
op
:
var
->
PendingOps
())
{
auto
*
compute_op
=
dynamic_cast
<
ComputationOpHandle
*>
(
op
);
if
(
compute_op
!=
nullptr
&&
compute_op
->
GetPlace
()
==
var_in
->
place_
)
{
return
compute_op
;
}
for
(
auto
*
out_var
:
op
->
Outputs
())
{
queue
.
push
(
out_var
);
}
}
}
while
(
!
queue
.
empty
());
return
nullptr
;
}
std
::
unique_ptr
<
ir
::
Graph
>
ReferenceCountPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
auto
&
ref_cnts
=
Get
<
DeviceReferenceCountMap
>
(
kGlobalReferenceCount
);
...
...
@@ -34,6 +54,9 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
// Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops
std
::
unordered_set
<
std
::
string
>
names
;
std
::
unordered_map
<
OpHandleBase
*
,
std
::
unique_ptr
<
ReferenceCountOpHandle
>>
compute_ref_cnt_map
;
auto
get_ref_cnts_from_compute_op
=
[
&
](
const
std
::
unique_ptr
<
OpHandleBase
>
&
op
,
const
std
::
vector
<
VarHandleBase
*>
&
vars
)
{
...
...
@@ -54,15 +77,18 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
VarDesc
*
var_desc
=
var_handle
->
Node
()
->
Var
();
auto
var_name
=
var_handle
->
Node
()
->
Name
();
// This is w
ie
rd but there is really some variables without var_desc
// This is w
ei
rd but there is really some variables without var_desc
// in computation_op
if
(
var_desc
==
nullptr
)
{
if
(
compute_op
->
Node
()
->
Op
()
->
Block
()
->
FindVar
(
var_name
)
==
nullptr
)
continue
;
}
else
{
if
(
var_desc
->
Persistable
()
||
var_desc
->
Proto
()
->
type
().
type
()
!=
proto
::
VarType
::
LOD_TENSOR
)
if
(
var_desc
->
Persistable
())
continue
;
auto
var_type
=
var_desc
->
Proto
()
->
type
().
type
();
if
(
var_type
!=
proto
::
VarType
::
LOD_TENSOR
&&
var_type
!=
proto
::
VarType
::
SELECTED_ROWS
)
{
continue
;
}
}
// compute op only runs in one device
...
...
@@ -93,12 +119,33 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
if
(
ref_cnts
.
count
(
place
.
device
)
&&
ref_cnts
[
place
.
device
]
->
count
(
var_name
))
{
++
(
*
ref_cnts
[
place
.
device
])[
var_name
];
auto
*
next_compute_op
=
FindNextComputationOpHandle
(
var_handle
);
if
(
next_compute_op
!=
nullptr
)
{
if
(
compute_ref_cnt_map
.
count
(
next_compute_op
))
{
compute_ref_cnt_map
[
next_compute_op
]
->
AddVar
(
var_name
);
VLOG
(
5
)
<<
"Add reference count of "
<<
var_name
<<
" to Operator "
<<
next_compute_op
->
Name
();
}
else
{
// Create new reference_count_op_handle
ir
::
Node
*
ref_cnt_node
=
graph
->
CreateEmptyNode
(
"reference_count"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
next_compute_op
->
GetScope
(),
place
,
{
var_name
},
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
if
(
next_compute_op
->
Outputs
().
empty
())
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
next_compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
next_compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
next_compute_op
].
reset
(
ref_cnt_handle
);
}
}
}
}
};
std
::
unordered_map
<
OpHandleBase
*
,
ReferenceCountOpHandle
*>
compute_ref_cnt_map
;
auto
&
all_ops
=
graph
->
Get
<
GraphOps
>
(
kGraphOps
);
for
(
auto
&
op
:
all_ops
)
{
auto
in_var_names
=
get_ref_cnts_from_compute_op
(
op
,
op
->
Inputs
());
...
...
@@ -113,11 +160,13 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
auto
*
ref_cnt_handle
=
new
ReferenceCountOpHandle
(
ref_cnt_node
,
compute_op
->
GetScope
(),
place
,
in_var_names
,
gcs
[
place
.
device
].
get
(),
cur_ref_cnts
[
place
.
device
].
get
());
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
ref_cnt_handle
->
AddInput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
compute_ref_cnt_map
[
compute_op
]
=
ref_cnt_handle
;
if
(
compute_op
->
Outputs
().
empty
())
{
auto
*
dep_var
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
compute_op
->
AddOutput
(
dep_var
);
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
}
ref_cnt_handle
->
AddInput
(
compute_op
->
Outputs
().
front
());
compute_ref_cnt_map
[
compute_op
].
reset
(
ref_cnt_handle
);
}
for
(
auto
&
op
:
all_ops
)
{
...
...
@@ -131,7 +180,11 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
new_all_ops
.
emplace_back
(
std
::
move
(
op
));
auto
it
=
compute_ref_cnt_map
.
find
(
new_all_ops
.
back
().
get
());
if
(
it
!=
compute_ref_cnt_map
.
end
())
{
new_all_ops
.
emplace_back
(
it
->
second
);
// Add LeafNode to ReferenceCountOpHandle
auto
*
dummy_leaf
=
new
DummyVarHandle
(
graph
->
CreateControlDepVar
());
graph
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dummy_leaf
);
it
->
second
->
AddOutput
(
dummy_leaf
);
new_all_ops
.
emplace_back
(
std
::
move
(
it
->
second
));
}
}
...
...
paddle/fluid/operators/adam_op.h
浏览文件 @
08b22cf1
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
...
...
@@ -306,26 +307,43 @@ class AdamOpKernel : public framework::OpKernel<T> {
VLOG
(
3
)
<<
"grad row size is 0!!"
;
return
;
}
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
&
grad_merge
=
*
(
ctx
.
scope
()
.
NewScope
()
.
Var
(
"sparse_adam_grad_merge"
)
->
GetMutable
<
framework
::
SelectedRows
>
());
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
,
&
grad_merge
);
std
::
vector
<
int64_t
>
cpu_rows
(
grad
.
rows
().
begin
(),
grad
.
rows
().
end
());
bool
is_strict_sorted
=
true
;
for
(
size_t
i
=
1
;
i
<
cpu_rows
.
size
();
++
i
)
{
if
(
cpu_rows
[
i
-
1
]
>=
cpu_rows
[
i
])
{
is_strict_sorted
=
false
;
break
;
}
}
const
framework
::
SelectedRows
*
grad_merge_ptr
;
if
(
is_strict_sorted
)
{
grad_merge_ptr
=
&
grad
;
}
else
{
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
auto
*
grad_merge_var
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
()
->
GetMutable
<
framework
::
SelectedRows
>
();
merge_func
(
ctx
.
template
device_context
<
DeviceContext
>(),
grad
,
grad_merge_var
);
grad_merge_ptr
=
grad_merge_var
;
}
auto
&
grad_merge
=
*
grad_merge_ptr
;
auto
&
grad_tensor
=
grad_merge
.
value
();
const
T
*
grad_data
=
grad_tensor
.
template
data
<
T
>();
int64_t
*
rows
=
nullptr
;
// When compiled without CUDA, the CUDA
Mutable
Data() interface should not be
const
int64_t
*
rows
=
nullptr
;
// When compiled without CUDA, the CUDAData() interface should not be
// provided.
#if defined(PADDLE_WITH_CUDA)
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
rows
=
grad_merge
.
mutable_rows
()
->
CUDAMutable
Data
(
ctx
.
GetPlace
());
rows
=
grad_merge
.
rows
().
CUDA
Data
(
ctx
.
GetPlace
());
}
else
{
#endif
rows
=
grad_merge
.
mutable_rows
()
->
data
();
rows
=
grad_merge
.
rows
().
data
();
#if defined(PADDLE_WITH_CUDA)
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
08b22cf1
...
...
@@ -45,8 +45,9 @@ __all__ = [
'lod_reset'
,
'lrn'
,
'pad'
,
'pad_constant_like'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'sequence_scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'prelu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'log'
,
'crop'
,
'rank_loss'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'swish'
,
'prelu'
,
'flatten'
,
'sequence_mask'
,
'stack'
,
'pad2d'
,
'unstack'
,
'sequence_enumerate'
,
'expand'
,
'sequence_concat'
,
'uniform_random_batch_size_like'
,
'gaussian_random'
,
'sampling_id'
,
'gaussian_random_batch_size_like'
,
'sum'
,
'slice'
,
'shape'
]
...
...
@@ -5828,6 +5829,148 @@ def pad2d(input,
return
out
@
templatedoc
()
def
elu
(
x
,
alpha
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
alpha(${alpha_type}|1.0): ${alpha_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'elu'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'elu'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'alpha'
:
alpha
})
return
out
@
templatedoc
()
def
relu6
(
x
,
threshold
=
6.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
threshold(${threshold_type}|6.0): ${threshold_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'relu6'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'relu6'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'threshold'
:
threshold
})
return
out
@
templatedoc
()
def
pow
(
x
,
factor
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
factor(${factor_type}|1.0): ${factor_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'pow'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'pow'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'factor'
:
factor
})
return
out
@
templatedoc
()
def
stanh
(
x
,
scale_a
=
2.0
/
3.0
,
scale_b
=
1.7159
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'stanh'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'stanh'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'scale_a'
:
scale_a
,
'scale_b'
:
scale_b
})
return
out
@
templatedoc
()
def
hard_sigmoid
(
x
,
slope
=
0.2
,
offset
=
0.5
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
slope(${slope_type}|0.2): ${slope_comment}
offset(${offset_type}|0.5): ${offset_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'hard_sigmoid'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'hard_sigmoid'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
slope
,
'offset'
:
offset
})
return
out
@
templatedoc
()
def
swish
(
x
,
beta
=
1.0
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
beta(${beta_type}|1.0): ${beta_comment}
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
Returns:
output(${out_type}): ${out_comment}
"""
helper
=
LayerHelper
(
'swish'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'swish'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'slope'
:
beta
})
return
out
def
prelu
(
x
,
mode
,
param_attr
=
None
,
name
=
None
):
"""
Equation:
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
08b22cf1
...
...
@@ -36,12 +36,6 @@ __activations__ = [
'brelu'
,
'leaky_relu'
,
'soft_relu'
,
'elu'
,
'relu6'
,
'pow'
,
'stanh'
,
'hard_sigmoid'
,
'swish'
,
]
__all__
=
[
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录