Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
084893a9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
084893a9
编写于
9月 27, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vadd kernel
上级
eeff268a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
148 addition
and
44 deletion
+148
-44
paddle/fluid/operators/math/jit_kernel.cc
paddle/fluid/operators/math/jit_kernel.cc
+27
-19
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+9
-0
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+98
-16
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+14
-9
未找到文件。
paddle/fluid/operators/math/jit_kernel.cc
浏览文件 @
084893a9
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/jit_kernel.h"
#include <iostream>
#include <string>
namespace
paddle
{
...
...
@@ -27,29 +28,35 @@ KernelPool& KernelPool::Instance() {
return
g_jit_kernels
;
}
template
<
>
const
std
::
shared_ptr
<
VMulKernel
<
float
>>
KernelPool
::
Get
<
VMulKernel
<
float
>>
(
int
d
)
{
std
::
string
key
=
"f"
+
std
::
to_string
(
d
);
const
std
::
shared_ptr
<
Kernel
>
KernelPool
::
Get
(
const
std
::
string
&
key
)
const
{
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
VMulKernel
<
float
>>
(
d
);
kers_
.
insert
({
key
,
std
::
dynamic_pointer_cast
<
Kernel
>
(
p
)});
return
p
;
return
nullptr
;
}
return
std
::
dynamic_pointer_cast
<
VMulKernel
<
float
>>
(
kers_
.
at
(
key
)
);
return
kers_
.
at
(
key
);
}
template
<
>
const
std
::
shared_ptr
<
VMulKernel
<
double
>>
KernelPool
::
Get
<
VMulKernel
<
double
>>
(
int
d
)
{
std
::
string
key
=
"d"
+
std
::
to_string
(
d
);
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
VMulKernel
<
double
>>
(
d
);
kers_
.
insert
({
key
,
std
::
dynamic_pointer_cast
<
Kernel
>
(
p
)});
return
p
;
#define DEFINE_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key) \
template <> \
const std::shared_ptr<ker_class<ker_dtype>> \
KernelPool::Get<ker_class<ker_dtype>>(int d) { \
std::string key = #ker_key #dtype_key + std::to_string(d); \
if (kers_.find(key) == kers_.end()) { \
auto p = std::make_shared<ker_class<ker_dtype>>(d); \
kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)}); \
return p; \
} \
return std::dynamic_pointer_cast<ker_class<ker_dtype>>(kers_.at(key)); \
}
return
std
::
dynamic_pointer_cast
<
VMulKernel
<
double
>>
(
kers_
.
at
(
key
));
}
#define REGISTER_BLAS_JITKERNEL(ker_key, ker_class) \
DEFINE_WITH_DTYPE(ker_key, ker_class, float, f); \
DEFINE_WITH_DTYPE(ker_key, ker_class, double, d)
REGISTER_BLAS_JITKERNEL
(
vmul
,
VMulKernel
);
REGISTER_BLAS_JITKERNEL
(
vadd
,
VAddKernel
);
#undef REGISTER_BLAS_JITKERNEL
#undef DEFINE_WITH_DTYPE
template
<
>
const
std
::
shared_ptr
<
LSTMKernel
<
float
>>
...
...
@@ -57,7 +64,8 @@ KernelPool::Get<LSTMKernel<float>, int, const std::string&, const std::string&,
const
std
::
string
&>
(
int
d
,
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_cand
,
const
std
::
string
&
act_cell
)
{
std
::
string
key
=
"f"
+
std
::
to_string
(
d
)
+
act_gate
+
act_cand
+
act_cell
;
std
::
string
key
=
"lstmf"
+
std
::
to_string
(
d
)
+
act_gate
+
act_cand
+
act_cell
;
if
(
kers_
.
find
(
key
)
==
kers_
.
end
())
{
auto
p
=
std
::
make_shared
<
LSTMKernel
<
float
>>
(
d
,
act_gate
,
act_cand
,
act_cell
);
...
...
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
084893a9
...
...
@@ -54,6 +54,8 @@ class KernelPool {
template
<
typename
Ker
,
typename
...
ARGS
>
const
std
::
shared_ptr
<
Ker
>
Get
(
ARGS
...
args
);
const
std
::
shared_ptr
<
Kernel
>
Get
(
const
std
::
string
&
key
)
const
;
private:
KernelPool
()
=
default
;
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
Kernel
>>
kers_
;
...
...
@@ -68,6 +70,13 @@ class VMulKernel : public Kernel {
void
(
*
Compute
)(
const
int
n
,
const
T
*
,
const
T
*
,
T
*
);
};
template
<
typename
T
>
class
VAddKernel
:
public
Kernel
{
public:
explicit
VAddKernel
(
int
n
);
void
(
*
Compute
)(
const
int
n
,
const
T
*
,
const
T
*
,
T
*
);
};
template
<
typename
T
>
class
LSTMKernel
:
public
Kernel
{
public:
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
084893a9
...
...
@@ -74,15 +74,22 @@ namespace jit = platform::jit;
FOR_EACH_ALL_BLOCK(macro_, jit::avx) \
FOR_EACH_ALL_BLOCK(macro_, jit::any)
/* VMUL JitKernel */
#define VMUL_ANY
\
for (int i = 0; i < n; ++i) {
\
z[i] = x[i] * y[i];
\
#define BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, ker_dtype) \
template <>
\
ker_class<ker_dtype>::ker_class(int d) {
\
SEARCH_ISA_BLOCK(ker_func, ker_dtype);
\
}
#define BIND_KERNEL(ker_class, ker_func) \
BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, float); \
BIND_KERNEL_WITH_DTYPE(ker_class, ker_func, double)
/* VMUL JitKernel */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
static
void
VMulCompute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
{
VMUL_ANY
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
*
y
[
i
];
}
}
#ifdef PADDLE_USE_MKLML
...
...
@@ -107,6 +114,8 @@ FOR_EACH_ISA_ALL_BLOCK(VMUL_MKL_DOUBLE)
/// lt8
#ifdef PADDLE_USE_MKLML
VMUL_MKL_FLOAT
(
jit
::
avx
,
kLT8
)
VMUL_MKL_FLOAT
(
jit
::
avx2
,
kLT8
)
VMUL_MKL_FLOAT
(
jit
::
avx512f
,
kLT8
)
#endif
/// eq8
...
...
@@ -143,20 +152,93 @@ VMUL_MKL_FLOAT(jit::avx2, kEQ16)
VMUL_MKL_FLOAT
(
jit
::
avx512f
,
kEQ16
)
#endif
#define USE_VMUL_KERNEL(T, func) \
template <> \
VMulKernel<T>::VMulKernel(int d) { \
SEARCH_ISA_BLOCK(func, T); \
}
USE_VMUL_KERNEL
(
float
,
VMulCompute
);
USE_VMUL_KERNEL
(
double
,
VMulCompute
);
#undef VMUL_ANY
#undef VMUL_INTRI8_FLOAT
#undef VMUL_MKL_FLOAT
#undef VMUL_MKL_DOUBLE
#undef USE_VMUL_KERNEL
/* VADD */
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
static
void
VAddCompute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
z
[
i
]
=
x
[
i
]
+
y
[
i
];
}
}
#ifdef PADDLE_USE_MKLML
#define VADD_MKL_FLOAT(isa, block) \
template <> \
void VAddCompute<float, isa, block>(const int n, const float* x, \
const float* y, float* z) { \
platform::dynload::vsAdd(n, x, y, z); \
}
#define VADD_MKL_DOUBLE(isa, block) \
template <> \
void VAddCompute<double, isa, block>(const int n, const double* x, \
const double* y, float* z) { \
platform::dynload::vdAdd(n, x, y, z); \
}
FOR_EACH_ISA_COMMON_BLOCK
(
VADD_MKL_FLOAT
)
FOR_EACH_ISA_ALL_BLOCK
(
VADD_MKL_DOUBLE
)
#endif
/// lt8
#ifdef PADDLE_USE_MKLML
VADD_MKL_FLOAT
(
jit
::
avx
,
kLT8
)
VADD_MKL_FLOAT
(
jit
::
avx2
,
kLT8
)
VADD_MKL_FLOAT
(
jit
::
avx512f
,
kLT8
)
#endif
/// eq8
#define VADD_INTRI8_FLOAT(isa) \
template <> \
void VAddCompute<float, isa, kEQ8>(const int n, const float* x, \
const float* y, float* z) { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_add_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
// mkl > avx > for, ">" means better
#ifdef PADDLE_USE_MKLML
VADD_MKL_FLOAT
(
jit
::
avx
,
kEQ8
)
#elif defined __AVX__
VADD_INTRI8_FLOAT
(
jit
::
avx
)
#endif
// avx2 > mkl > for
#ifdef __AVX2__
VADD_INTRI8_FLOAT
(
jit
::
avx2
)
#elif defined PADDLE_USE_MKLML
VADD_MKL_FLOAT
(
jit
::
avx2
,
kEQ8
)
#endif
// TODO(TJ): test and complete avx512
/// eq16
#ifdef PADDLE_USE_MKLML
// TODO(TJ): test and complete me
VADD_MKL_FLOAT
(
jit
::
avx
,
kEQ16
)
VADD_MKL_FLOAT
(
jit
::
avx2
,
kEQ16
)
VADD_MKL_FLOAT
(
jit
::
avx512f
,
kEQ16
)
#endif
#undef VADD_INTRI8_FLOAT
#undef VADD_MKL_FLOAT
#undef VADD_MKL_DOUBLE
BIND_KERNEL
(
VMulKernel
,
VMulCompute
);
BIND_KERNEL
(
VAddKernel
,
VAddCompute
);
#undef BIND_KERNEL
#undef BIND_KERNEL_WITH_DTYPE
#undef FOR_EACH_ISA_ALL_BLOCK
#undef FOR_EACH_ALL_BLOCK
#undef FOR_EACH_ISA_COMMON_BLOCK
#undef FOR_EACH_COMMON_BLOCK
#undef SEARCH_ISA_BLOCK
#undef SEARCH_BLOCK
}
// namespace jitkernel
}
// namespace math
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
084893a9
...
...
@@ -23,25 +23,30 @@ TEST(JitKernel, pool) {
namespace
jit
=
paddle
::
operators
::
math
::
jitkernel
;
const
int
frame_size
=
4
;
std
::
string
act_gate
=
"sigmoid"
,
act_cand
=
"tanh"
,
act_cell
=
"tanh"
;
const
auto
&
p1
=
const
auto
&
p
lstm
1
=
jit
::
KernelPool
::
Instance
()
.
template
Get
<
jit
::
LSTMKernel
<
float
>,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
const
std
::
string
&>
(
frame_size
,
act_gate
,
act_cand
,
act_cell
);
const
auto
&
p2
=
const
auto
&
p
lstm
2
=
jit
::
KernelPool
::
Instance
()
.
template
Get
<
jit
::
LSTMKernel
<
float
>,
int
,
const
std
::
string
&
,
const
std
::
string
&
,
const
std
::
string
&>
(
frame_size
,
act_gate
,
act_cand
,
act_cell
);
EXPECT_EQ
(
p
1
,
p
2
);
EXPECT_EQ
(
p
lstm1
,
plstm
2
);
const
auto
&
p
3
=
const
auto
&
p
vmul_f
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VMulKernel
<
float
>
>
(
4
);
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p2
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p
3
));
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p
lstm
2
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p
vmul_f
));
const
auto
&
p
4
=
const
auto
&
p
vmul_d
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VMulKernel
<
double
>
>
(
4
);
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p3
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
p4
));
EXPECT_TRUE
(
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
pvmul_f
)
!=
std
::
dynamic_pointer_cast
<
jit
::
Kernel
>
(
pvmul_d
));
const
auto
&
pvmul_from_key
=
jit
::
KernelPool
::
Instance
().
Get
(
"vmulf4"
);
EXPECT_TRUE
(
pvmul_f
==
pvmul_from_key
);
const
auto
&
pvmul_from_key2
=
jit
::
KernelPool
::
Instance
().
Get
(
"vmulf5"
);
EXPECT_TRUE
(
pvmul_from_key2
==
nullptr
);
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录