Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
075df09f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
075df09f
编写于
1月 29, 2019
作者:
J
Jiabin Yang
提交者:
GitHub
1月 29, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15470 from JiabinYang/feature/imperative
Add simple RNN in imperative
上级
b69996c2
fff67a94
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
605 addition
and
10 deletion
+605
-10
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+1
-0
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
...le/fluid/inference/analysis/passes/memory_optimize_pass.h
+3
-1
paddle/fluid/inference/utils/CMakeLists.txt
paddle/fluid/inference/utils/CMakeLists.txt
+2
-2
python/paddle/fluid/imperative/nn.py
python/paddle/fluid/imperative/nn.py
+89
-7
python/paddle/fluid/tests/unittests/test_imperative.py
python/paddle/fluid/tests/unittests/test_imperative.py
+157
-0
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
...n/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
+353
-0
未找到文件。
paddle/fluid/imperative/tracer.cc
浏览文件 @
075df09f
...
...
@@ -31,6 +31,7 @@ void CreateGradOp(const framework::OpDesc& op_desc,
framework
::
OpInfoMap
::
Instance
()
.
Get
(
op_desc
.
Type
())
.
GradOpMaker
()(
op_desc
,
no_grad_set
,
grad_to_var
,
grad_sub_block
);
for
(
auto
&
desc
:
descs
)
{
grad_op_descs
->
emplace_back
(
desc
.
release
());
}
...
...
paddle/fluid/inference/analysis/passes/memory_optimize_pass.h
浏览文件 @
075df09f
...
...
@@ -13,7 +13,9 @@
// limitations under the License.
#pragma once
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/port.h"
...
...
paddle/fluid/inference/utils/CMakeLists.txt
浏览文件 @
075df09f
cc_library
(
benchmark SRCS benchmark.cc DEPS enforce
)
cc_test
(
test_benchmark SRCS benchmark_tester.cc DEPS benchmark
)
cc_binary
(
visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes
)
#
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
#
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
python/paddle/fluid/imperative/nn.py
浏览文件 @
075df09f
...
...
@@ -22,13 +22,7 @@ from . import layers
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
..initializer
import
Normal
,
Constant
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
]
__all__
=
[
'Conv2D'
,
'Pool2D'
,
'FC'
,
'BatchNorm'
,
'Embedding'
]
class
Conv2D
(
layers
.
Layer
):
...
...
@@ -414,3 +408,91 @@ class BatchNorm(layers.Layer):
# Currently, we don't support inplace in imperative mode
return
self
.
_helper
.
append_activation
(
batch_norm_out
)
class
Embedding
(
layers
.
Layer
):
"""
**Embedding Layer**
This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
a lookup table. The result of this lookup is the embedding of each ID in the
:attr:`input`.
All the input variables are passed in as local variables to the LayerHelper
constructor.
Args:
size(tuple|list): The shape of the look up table parameter. It should
have two elements which indicate the size of the dictionary of
embeddings and the size of each embedding vector respectively.
is_sparse(bool): The flag indicating whether to use sparse update.
is_distributed(bool): Whether to run lookup table from remote parameter server.
padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
Otherwise the given :attr:`padding_idx` indicates padding the output
with zeros whenever lookup encounters it in :attr:`input`. If
:math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
:math:`size[0] + dim`.
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Returns:
Variable: The tensor variable storing the embeddings of the
\
supplied inputs.
Examples:
.. code-block:: python
dict_size = len(dataset.ids)
input = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
embedding = fluid.imperative.Embedding(size=[dict_size, 16])
fc = embedding(input)
"""
def
__init__
(
self
,
size
,
is_sparse
=
False
,
is_distributed
=
False
,
padding_idx
=
None
,
param_attr
=
None
,
dtype
=
'float32'
):
super
(
Embedding
,
self
).
__init__
()
self
.
_size
=
size
self
.
_is_sparse
=
is_sparse
self
.
_is_distributed
=
is_distributed
self
.
_padding_idx
=
-
1
if
padding_idx
is
None
else
padding_idx
if
padding_idx
>=
0
else
(
size
[
0
]
+
padding_idx
)
self
.
_param_attr
=
param_attr
self
.
_dtype
=
dtype
self
.
_remote_prefetch
=
self
.
_is_sparse
and
(
not
self
.
_is_distributed
)
if
self
.
_remote_prefetch
:
assert
self
.
_is_sparse
is
True
and
self
.
_is_distributed
is
False
from
..layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'embedding'
,
param_attr
=
param_attr
)
self
.
_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_param_attr
,
shape
=
self
.
_size
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
parameters
(
self
):
return
[
self
.
_w
]
def
forward
(
self
,
input
):
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
'lookup_table'
,
inputs
=
{
'Ids'
:
input
,
'W'
:
self
.
_w
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'is_sparse'
:
self
.
_is_sparse
,
'is_distributed'
:
self
.
_is_distributed
,
'remote_prefetch'
:
self
.
_remote_prefetch
,
'padding_idx'
:
self
.
_padding_idx
})
return
out
python/paddle/fluid/tests/unittests/test_imperative.py
浏览文件 @
075df09f
...
...
@@ -66,6 +66,128 @@ class MLP(fluid.imperative.Layer):
return
x
class
SimpleRNNCell
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
step_input_size
,
hidden_size
,
output_size
,
param_attr
):
super
(
SimpleRNNCell
,
self
).
__init__
()
self
.
step_input_size
=
step_input_size
self
.
hidden_size
=
hidden_size
self
.
output_size
=
output_size
self
.
_dype
=
core
.
VarDesc
.
VarType
.
FP32
from
paddle.fluid.layer_helper
import
LayerHelper
self
.
_helper
=
LayerHelper
(
'SimpleRNNCell'
,
act
=
"tanh"
,
param_attr
=
param_attr
)
def
_build_once
(
self
,
inputs
,
pre_hidden
):
i2h_param_shape
=
[
self
.
step_input_size
,
self
.
hidden_size
]
h2h_param_shape
=
[
self
.
hidden_size
,
self
.
hidden_size
]
h2o_param_shape
=
[
self
.
output_size
,
self
.
hidden_size
]
self
.
_i2h_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
i2h_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_h2h_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
h2h_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
self
.
_h2o_w
=
self
.
_helper
.
create_parameter
(
attr
=
self
.
_helper
.
param_attr
,
shape
=
h2o_param_shape
,
dtype
=
self
.
_dtype
,
is_bias
=
False
)
def
forward
(
self
,
input
,
pre_hidden
):
tmp_i2h
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
tmp_h2h
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
hidden
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dype
)
out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dype
)
softmax_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
reduce_out
=
self
.
_helper
.
create_variable_for_type_inference
(
self
.
_dtype
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
input
,
"Y"
:
self
.
_i2h_w
},
outputs
=
{
"Out"
:
tmp_i2h
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
pre_hidden
,
"Y"
:
self
.
_h2h_w
},
outputs
=
{
"Out"
:
tmp_h2h
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"elementwise_add"
,
inputs
=
{
'X'
:
tmp_h2h
,
'Y'
:
tmp_i2h
},
outputs
=
{
'Out'
:
hidden
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
})
hidden
=
self
.
_helper
.
append_activation
(
hidden
)
self
.
_helper
.
append_op
(
type
=
"mul"
,
inputs
=
{
"X"
:
hidden
,
"Y"
:
self
.
_h2o_w
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"x_num_col_dims"
:
1
,
"y_num_col_dims"
:
1
})
self
.
_helper
.
append_op
(
type
=
"softmax"
,
inputs
=
{
"X"
:
out
},
outputs
=
{
"Out"
:
softmax_out
},
attrs
=
{
"use_cudnn"
:
False
})
self
.
_helper
.
append_op
(
type
=
'reduce_sum'
,
inputs
=
{
'X'
:
softmax_out
},
outputs
=
{
'Out'
:
reduce_out
},
attrs
=
{
'dim'
:
None
,
'keep_dim'
:
False
,
'reduce_all'
:
True
})
return
reduce_out
,
hidden
class
SimpleRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
):
super
(
SimpleRNN
,
self
).
__init__
()
self
.
seq_len
=
4
self
.
_cell
=
SimpleRNNCell
(
3
,
3
,
3
,
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)))
def
forward
(
self
,
inputs
):
outs
=
list
()
pre_hiddens
=
list
()
init_hidden
=
fluid
.
layers
.
tensor
.
create_parameter
(
attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.1
)),
shape
=
[
1
,
3
],
dtype
=
'float32'
,
is_bias
=
False
)
pre_hidden
=
init_hidden
for
i
in
range
(
self
.
seq_len
):
input
=
fluid
.
layers
.
slice
(
inputs
,
axes
=
[
1
],
starts
=
[
i
],
ends
=
[
i
+
1
])
input
=
fluid
.
layers
.
reshape
(
input
,
shape
=
[
1
,
3
])
out_softmax
,
pre_hidden
=
self
.
_cell
(
input
,
pre_hidden
)
outs
.
append
(
out_softmax
)
return
outs
,
pre_hiddens
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
...
...
@@ -211,6 +333,41 @@ class TestImperative(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
def
test_rnn
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
[
10.0
,
11.0
,
12.0
]])
np_inp
=
np_inp
.
reshape
((
1
,
4
,
3
))
np_inp
=
np_inp
.
astype
(
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
()
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
dy_grad_h2o
=
simple_rnn
.
_cell
.
_h2o_w
.
_gradient
()
dy_grad_h2h
=
simple_rnn
.
_cell
.
_h2h_w
.
_gradient
()
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
()
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad_h2o
,
static_grad_h2h
,
static_grad_i2h
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
outs
[
3
].
name
,
param_grads
[
0
][
1
].
name
,
param_grads
[
1
][
1
].
name
,
param_grads
[
2
][
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2o
,
static_grad_h2o
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2h
,
static_grad_h2h
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_i2h
,
static_grad_i2h
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_imperative_ptb_rnn.py
0 → 100644
浏览文件 @
075df09f
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
paddle.fluid
as
fluid
from
paddle.fluid.imperative.nn
import
Embedding
import
paddle.fluid.framework
as
framework
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
import
numpy
as
np
import
six
from
paddle.fluid.backward
import
append_backward
class
SimpleLSTMRNN
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
num_steps
,
num_layers
=
2
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
SimpleLSTMRNN
,
self
).
__init__
()
self
.
_hidden_size
=
hidden_size
self
.
_num_layers
=
num_layers
self
.
_init_scale
=
init_scale
self
.
_dropout
=
dropout
self
.
_input
=
None
self
.
_num_steps
=
num_steps
def
_build_once
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
self
.
weight_1_arr
=
[]
self
.
weight_2_arr
=
[]
self
.
bias_arr
=
[]
self
.
hidden_array
=
[]
self
.
cell_array
=
[]
self
.
mask_array
=
[]
for
i
in
range
(
self
.
_num_layers
):
weight_1
=
fluid
.
layers
.
create_parameter
(
shape
=
[
self
.
_hidden_size
*
2
,
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_weight1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
_init_scale
,
high
=
self
.
_init_scale
))
self
.
weight_1_arr
.
append
(
weight_1
)
bias_1
=
fluid
.
layers
.
create_parameter
(
[
self
.
_hidden_size
*
4
],
dtype
=
"float32"
,
name
=
"fc_bias1_"
+
str
(
i
),
default_initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
self
.
bias_arr
.
append
(
bias_1
)
pre_hidden
=
fluid
.
layers
.
slice
(
init_hidden
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_cell
=
fluid
.
layers
.
slice
(
init_cell
,
axes
=
[
0
],
starts
=
[
i
],
ends
=
[
i
+
1
])
pre_hidden
=
fluid
.
layers
.
reshape
(
pre_hidden
,
shape
=
[
-
1
,
self
.
_hidden_size
])
pre_cell
=
fluid
.
layers
.
reshape
(
pre_cell
,
shape
=
[
-
1
,
self
.
_hidden_size
])
self
.
hidden_array
.
append
(
pre_hidden
)
self
.
cell_array
.
append
(
pre_cell
)
def
parameters
(
self
):
parameters
=
list
()
for
param
in
self
.
weight_1_arr
:
parameters
.
append
(
param
)
for
param
in
self
.
weight_2_arr
:
parameters
.
append
(
param
)
for
bias
in
self
.
bias_arr
:
parameters
.
append
(
bias
)
return
parameters
def
forward
(
self
,
input_embedding
,
init_hidden
=
None
,
init_cell
=
None
):
res
=
[]
for
index
in
range
(
self
.
_num_steps
):
self
.
_input
=
fluid
.
layers
.
slice
(
input_embedding
,
axes
=
[
1
],
starts
=
[
index
],
ends
=
[
index
+
1
])
self
.
_input
=
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
-
1
,
self
.
_hidden_size
])
for
k
in
range
(
self
.
_num_layers
):
pre_hidden
=
self
.
hidden_array
[
k
]
pre_cell
=
self
.
cell_array
[
k
]
weight_1
=
self
.
weight_1_arr
[
k
]
bias
=
self
.
bias_arr
[
k
]
nn
=
fluid
.
layers
.
concat
([
self
.
_input
,
pre_hidden
],
1
)
gate_input
=
fluid
.
layers
.
matmul
(
x
=
nn
,
y
=
weight_1
)
gate_input
=
fluid
.
layers
.
elementwise_add
(
gate_input
,
bias
)
i
,
j
,
f
,
o
=
fluid
.
layers
.
split
(
gate_input
,
num_or_sections
=
4
,
dim
=-
1
)
c
=
pre_cell
*
fluid
.
layers
.
sigmoid
(
f
)
+
fluid
.
layers
.
sigmoid
(
i
)
*
fluid
.
layers
.
tanh
(
j
)
m
=
fluid
.
layers
.
tanh
(
c
)
*
fluid
.
layers
.
sigmoid
(
o
)
self
.
hidden_array
[
k
]
=
m
self
.
cell_array
[
k
]
=
c
self
.
_input
=
m
if
self
.
_dropout
is
not
None
and
self
.
_dropout
>
0.0
:
self
.
_input
=
fluid
.
layers
.
dropout
(
self
.
_input
,
dropout_prob
=
self
.
_dropout
,
dropout_implementation
=
'upscale_in_train'
)
res
.
append
(
fluid
.
layers
.
reshape
(
self
.
_input
,
shape
=
[
1
,
-
1
,
self
.
_hidden_size
]))
real_res
=
fluid
.
layers
.
concat
(
res
,
0
)
real_res
=
fluid
.
layers
.
transpose
(
x
=
real_res
,
perm
=
[
1
,
0
,
2
])
last_hidden
=
fluid
.
layers
.
concat
(
self
.
hidden_array
,
1
)
last_hidden
=
fluid
.
layers
.
reshape
(
last_hidden
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_hidden
=
fluid
.
layers
.
transpose
(
x
=
last_hidden
,
perm
=
[
1
,
0
,
2
])
last_cell
=
fluid
.
layers
.
concat
(
self
.
cell_array
,
1
)
last_cell
=
fluid
.
layers
.
reshape
(
last_cell
,
shape
=
[
-
1
,
self
.
_num_layers
,
self
.
_hidden_size
])
last_cell
=
fluid
.
layers
.
transpose
(
x
=
last_cell
,
perm
=
[
1
,
0
,
2
])
return
real_res
,
last_hidden
,
last_cell
class
PtbModel
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
hidden_size
,
vocab_size
,
num_layers
=
2
,
num_steps
=
20
,
init_scale
=
0.1
,
dropout
=
None
):
super
(
PtbModel
,
self
).
__init__
()
self
.
hidden_size
=
hidden_size
self
.
vocab_size
=
vocab_size
self
.
init_scale
=
init_scale
self
.
num_layers
=
num_layers
self
.
num_steps
=
num_steps
self
.
dropout
=
dropout
self
.
simple_lstm_rnn
=
SimpleLSTMRNN
(
hidden_size
,
num_steps
,
num_layers
=
num_layers
,
init_scale
=
init_scale
,
dropout
=
dropout
)
self
.
embedding
=
Embedding
(
size
=
[
vocab_size
,
hidden_size
],
dtype
=
'float32'
,
is_sparse
=
False
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'embedding_para'
,
initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
init_scale
,
high
=
init_scale
)))
self
.
softmax_weight
=
fluid
.
layers
.
create_parameter
(
[
self
.
hidden_size
,
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
"softmax_weight"
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
self
.
softmax_bias
=
fluid
.
layers
.
create_parameter
(
[
self
.
vocab_size
],
dtype
=
"float32"
,
name
=
'softmax_bias'
,
default_initializer
=
fluid
.
initializer
.
UniformInitializer
(
low
=-
self
.
init_scale
,
high
=
self
.
init_scale
))
def
_build_once
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
pass
def
parameters
(
self
):
parameters
=
self
.
simple_lstm_rnn
.
parameters
()
+
[
self
.
softmax_weight
,
self
.
softmax_bias
]
+
self
.
embedding
.
parameters
()
return
parameters
def
forward
(
self
,
input
,
label
,
init_hidden
,
init_cell
):
init_h
=
fluid
.
layers
.
reshape
(
init_hidden
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
init_c
=
fluid
.
layers
.
reshape
(
init_cell
,
shape
=
[
self
.
num_layers
,
-
1
,
self
.
hidden_size
])
x_emb
=
self
.
embedding
(
input
)
x_emb
=
fluid
.
layers
.
reshape
(
x_emb
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
if
self
.
dropout
is
not
None
and
self
.
dropout
>
0.0
:
x_emb
=
fluid
.
layers
.
dropout
(
x_emb
,
dropout_prob
=
self
.
drop_out
,
dropout_implementation
=
'upscale_in_train'
)
rnn_out
,
last_hidden
,
last_cell
=
self
.
simple_lstm_rnn
(
x_emb
,
init_h
,
init_c
)
rnn_out
=
fluid
.
layers
.
reshape
(
rnn_out
,
shape
=
[
-
1
,
self
.
num_steps
,
self
.
hidden_size
])
projection
=
fluid
.
layers
.
matmul
(
rnn_out
,
self
.
softmax_weight
)
projection
=
fluid
.
layers
.
elementwise_add
(
projection
,
self
.
softmax_bias
)
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
projection
=
fluid
.
layers
.
reshape
(
projection
,
shape
=
[
-
1
,
self
.
vocab_size
])
loss
=
fluid
.
layers
.
softmax_with_cross_entropy
(
logits
=
projection
,
label
=
label
,
soft_label
=
False
)
loss
=
fluid
.
layers
.
reshape
(
loss
,
shape
=
[
-
1
,
self
.
num_steps
])
loss
=
fluid
.
layers
.
reduce_mean
(
loss
,
dim
=
[
0
])
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
loss
.
permissions
=
True
return
loss
,
last_hidden
,
last_cell
class
TestImperativePtbRnn
(
unittest
.
TestCase
):
def
test_ptb_rnn_cpu_float32
(
self
):
seed
=
90
hidden_size
=
10
vocab_size
=
1000
num_layers
=
1
num_steps
=
3
init_scale
=
0.1
batch_size
=
4
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
dy_param_updated
=
dict
()
dy_param_init
=
dict
()
dy_loss
=
None
last_hidden
=
None
last_cell
=
None
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
x
=
to_variable
(
x_data
)
y
=
to_variable
(
y_data
)
init_hidden
=
to_variable
(
init_hidden_data
)
init_cell
=
to_variable
(
init_cell_data
)
dy_loss
,
last_hidden
,
last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
if
i
==
0
:
for
param
in
ptb_model
.
parameters
():
dy_param_init
[
param
.
name
]
=
param
.
_numpy
()
dy_loss
.
_backward
()
sgd
.
minimize
(
dy_loss
)
for
param
in
ptb_model
.
parameters
():
dy_param_updated
[
param
.
name
]
=
param
.
_numpy
()
# print("dy_loss is {}".format(dy_loss._numpy()))
# print("last_hidden is {}".format(last_hidden._numpy()))
# print("last_cell is {}".format(last_cell._numpy()))
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# TODO: marsyang1993 Change seed to
ptb_model
=
PtbModel
(
hidden_size
=
hidden_size
,
vocab_size
=
vocab_size
,
num_layers
=
num_layers
,
num_steps
=
num_steps
,
init_scale
=
init_scale
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
x
=
fluid
.
layers
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
3
,
1
],
dtype
=
'int64'
)
y
=
fluid
.
layers
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'float32'
)
init_hidden
=
fluid
.
layers
.
data
(
name
=
"init_hidden"
,
shape
=
[
1
],
dtype
=
'float32'
)
init_cell
=
fluid
.
layers
.
data
(
name
=
"init_cell"
,
shape
=
[
1
],
dtype
=
'float32'
)
static_loss
,
static_last_hidden
,
static_last_cell
=
ptb_model
(
x
,
y
,
init_hidden
,
init_cell
)
sgd
.
minimize
(
static_loss
)
static_param_updated
=
dict
()
static_param_init
=
dict
()
static_param_name_list
=
list
()
for
param
in
ptb_model
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
framework
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init
[
static_param_name_list
[
i
]]
=
out
[
i
]
static_loss_value
=
None
static_last_cell_value
=
None
static_last_hidden_value
=
None
for
i
in
range
(
2
):
x_data
=
np
.
arange
(
12
).
reshape
(
4
,
3
).
astype
(
'int64'
)
y_data
=
np
.
arange
(
1
,
13
).
reshape
(
4
,
3
).
astype
(
'int64'
)
x_data
=
x_data
.
reshape
((
-
1
,
num_steps
,
1
))
y_data
=
y_data
.
reshape
((
-
1
,
1
))
init_hidden_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
init_cell_data
=
np
.
zeros
(
(
num_layers
,
batch_size
,
hidden_size
),
dtype
=
'float32'
)
fetch_list
=
[
static_loss
,
static_last_hidden
,
static_last_cell
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"x"
:
x_data
,
"y"
:
y_data
,
"init_hidden"
:
init_hidden_data
,
"init_cell"
:
init_cell_data
},
fetch_list
=
fetch_list
)
static_loss_value
=
out
[
0
]
static_last_cell_value
=
out
[
1
]
static_last_hidden_value
=
out
[
2
]
for
k
in
range
(
3
,
len
(
out
)):
static_param_updated
[
static_param_name_list
[
k
-
3
]]
=
out
[
k
]
self
.
assertTrue
(
np
.
allclose
(
static_loss_value
.
all
(),
dy_loss
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_cell_value
.
all
(),
last_cell
.
_numpy
().
all
()))
self
.
assertTrue
(
np
.
allclose
(
static_last_hidden_value
.
all
(),
last_hidden
.
_numpy
().
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_init
[
key
].
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_updated
):
self
.
assertTrue
(
np
.
allclose
(
value
.
all
(),
dy_param_updated
[
key
].
all
()))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录