未验证 提交 0749c882 编写于 作者: T tangwei12 提交者: GitHub

Merge pull request #12556 from seiriosPlus/samplingIdOp

Sampling id op
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sampling_id_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class SamplingIdOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SamplingIdOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SamplingIdOp should not be null.");
PADDLE_ENFORCE(
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
"min must less then max");
auto input_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE(input_dims.size() == 2,
"Input(X, Filter) should be 2-D tensor.");
framework::DDim dims = input_dims;
ctx->SetOutputDim("Out", dims);
ctx->ShareLoD("X", "Out");
}
};
class SamplingIdOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"The input tensor of softmax. "
"2-D with shape [batch_size, input_feature_dimensions].");
AddOutput("Out", "SamplingId data tensor.");
AddComment(R"DOC(
SamplingId Operator.
A layer for sampling id from multinomial distribution from the
input. Sampling one id for one sample.)DOC");
AddAttr<float>("min", "Minimum value of random. [default 0.0].")
.SetDefault(0.0f);
AddAttr<float>("max", "Maximun value of random. [default 1.0].")
.SetDefault(1.0f);
AddAttr<int>("seed",
"Random seed used for the random number engine. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time. [default 0].")
.SetDefault(0);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(sampling_id, ops::SamplingIdOp, ops::SamplingIdOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
paddle::operators::SamplingIdKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/sampling_id_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
paddle::operators::SamplingIdKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
const int width = static_cast<int>(input->dims()[1]);
PADDLE_ENFORCE_GE(batch_size, 0,
"batch_size(dims[0]) must be nonnegative.");
PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");
std::vector<T> ins_vector;
framework::TensorToVector(*input, context.device_context(), &ins_vector);
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(
static_cast<T>(context.Attr<float>("min")),
static_cast<T>(context.Attr<float>("max")));
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
T r = dist(engine);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) {
idx = j;
break;
}
}
ids[i] = ins_vector[i * width + idx];
}
std::vector<int64_t> out_dim;
out_dim.push_back(static_cast<int64_t>(batch_size));
Tensor* output = context.Output<Tensor>("Out");
output->Resize(framework::make_ddim(out_dim));
output->mutable_data<T>(context.GetPlace());
framework::TensorFromVector(ids, context.device_context(), output);
}
};
} // namespace operators
} // namespace paddle
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
from paddle.fluid.op import Operator
class TestSamplingIdOp(OpTest):
def setUp(self):
self.op_type = "sampling_id"
self.use_mkldnn = False
self.init_kernel_type()
self.X = np.random.random((8, 4)).astype('float32')
self.inputs = {"X": self.X}
self.Y = np.random.random(8).astype('float32')
self.outputs = {'Out': self.Y}
self.attrs = {'max': 1.0, 'min': 0.0, 'seed': 1}
def test_check_output(self):
self.check_output_customized(self.verify_output)
y1 = self.out
self.check_output_customized(self.verify_output)
y2 = self.out
self.assertTrue(np.array_equal(y1, y2))
self.assertEqual(len(y1), len(self.Y))
def verify_output(self, outs):
out = np.array(outs[0])
self.out = out
def init_kernel_type(self):
pass
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册