Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
06607a89
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
06607a89
编写于
9月 17, 2020
作者:
W
wangxinxin08
提交者:
GitHub
9月 17, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tools/anchor_cluster.py (#1424)
* add tools/anchor_cluster.py
上级
ee780976
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
362 addition
and
0 deletion
+362
-0
tools/anchor_cluster.py
tools/anchor_cluster.py
+362
-0
未找到文件。
tools/anchor_cluster.py
0 → 100644
浏览文件 @
06607a89
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
# add python path of PadleDetection to sys.path
parent_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
__file__
,
*
([
'..'
]
*
2
)))
if
parent_path
not
in
sys
.
path
:
sys
.
path
.
append
(
parent_path
)
from
scipy.cluster.vq
import
kmeans
import
random
import
numpy
as
np
from
tqdm
import
tqdm
from
ppdet.utils.cli
import
ArgsParser
from
ppdet.utils.check
import
check_gpu
,
check_version
,
check_config
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
class
BaseAnchorCluster
(
object
):
def
__init__
(
self
,
n
,
cache_path
,
cache
,
verbose
=
True
):
"""
Base Anchor Cluster
Args:
n (int): number of clusters
cache_path (str): cache directory path
cache (bool): whether using cache
verbose (bool): whether print results
"""
super
(
BaseAnchorCluster
,
self
).
__init__
()
self
.
n
=
n
self
.
cache_path
=
cache_path
self
.
cache
=
cache
self
.
verbose
=
verbose
def
print_result
(
self
,
centers
):
raise
NotImplementedError
(
'%s.print_result is not available'
%
self
.
__class__
.
__name__
)
def
get_whs
(
self
):
whs_cache_path
=
os
.
path
.
join
(
self
.
cache_path
,
'whs.npy'
)
shapes_cache_path
=
os
.
path
.
join
(
self
.
cache_path
,
'shapes.npy'
)
if
self
.
cache
and
os
.
path
.
exists
(
whs_cache_path
)
and
os
.
path
.
exists
(
shapes_cache_path
):
self
.
whs
=
np
.
load
(
whs_cache_path
)
self
.
shapes
=
np
.
load
(
shapes_cache_path
)
return
self
.
whs
,
self
.
shapes
whs
=
np
.
zeros
((
0
,
2
))
shapes
=
np
.
zeros
((
0
,
2
))
roidbs
=
self
.
dataset
.
get_roidb
()
for
rec
in
tqdm
(
roidbs
):
h
,
w
=
rec
[
'h'
],
rec
[
'w'
]
bbox
=
rec
[
'gt_bbox'
]
wh
=
bbox
[:,
2
:
4
]
-
bbox
[:,
0
:
2
]
+
1
wh
=
wh
/
np
.
array
([[
w
,
h
]])
shape
=
np
.
ones_like
(
wh
)
*
np
.
array
([[
w
,
h
]])
whs
=
np
.
vstack
((
whs
,
wh
))
shapes
=
np
.
vstack
((
shapes
,
shape
))
if
self
.
cache
:
os
.
makedirs
(
self
.
cache_path
,
exist_ok
=
True
)
np
.
save
(
whs_cache_path
,
whs
)
np
.
save
(
shapes_cache_path
,
shapes
)
self
.
whs
=
whs
self
.
shapes
=
shapes
return
self
.
whs
,
self
.
shapes
def
calc_anchors
(
self
):
raise
NotImplementedError
(
'%s.calc_anchors is not available'
%
self
.
__class__
.
__name__
)
def
__call__
(
self
):
self
.
get_whs
()
centers
=
self
.
calc_anchors
()
if
self
.
verbose
:
self
.
print_result
(
centers
)
return
centers
class
YOLOv2AnchorCluster
(
BaseAnchorCluster
):
def
__init__
(
self
,
n
,
dataset
,
size
,
cache_path
,
cache
,
iters
=
1000
,
verbose
=
True
):
super
(
YOLOv2AnchorCluster
,
self
).
__init__
(
n
,
cache_path
,
cache
,
verbose
=
verbose
)
"""
YOLOv2 Anchor Cluster
Reference:
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): kmeans algorithm iters
verbose (bool): whether print results
"""
self
.
dataset
=
dataset
self
.
size
=
size
self
.
iters
=
iters
def
print_result
(
self
,
centers
):
logger
.
info
(
'%d anchor cluster result: [w, h]'
%
self
.
n
)
for
w
,
h
in
centers
:
logger
.
info
(
'[%d, %d]'
%
(
round
(
w
),
round
(
h
)))
def
metric
(
self
,
whs
,
centers
):
wh1
=
whs
[:,
None
]
wh2
=
centers
[
None
]
inter
=
np
.
minimum
(
wh1
,
wh2
).
prod
(
2
)
return
inter
/
(
wh1
.
prod
(
2
)
+
wh2
.
prod
(
2
)
-
inter
)
def
kmeans_expectation
(
self
,
whs
,
centers
,
assignments
):
dist
=
self
.
metric
(
whs
,
centers
)
new_assignments
=
dist
.
argmax
(
1
)
converged
=
(
new_assignments
==
assignments
).
all
()
return
converged
,
new_assignments
def
kmeans_maximizations
(
self
,
whs
,
centers
,
assignments
):
new_centers
=
np
.
zeros_like
(
centers
)
for
i
in
range
(
centers
.
shape
[
0
]):
mask
=
(
assignments
==
i
)
if
mask
.
sum
():
new_centers
[
i
,
:]
=
whs
[
mask
].
mean
(
0
)
return
new_centers
def
calc_anchors
(
self
):
self
.
whs
=
self
.
whs
*
np
.
array
([
self
.
size
])
# random select k centers
whs
,
n
,
iters
=
self
.
whs
,
self
.
n
,
self
.
iters
logger
.
info
(
'Running kmeans for %d anchors on %d points...'
%
(
n
,
len
(
whs
)))
idx
=
np
.
random
.
choice
(
whs
.
shape
[
0
],
size
=
n
,
replace
=
False
)
centers
=
whs
[
idx
]
assignments
=
np
.
zeros
(
whs
.
shape
[
0
:
1
])
*
-
1
# kmeans
if
n
==
1
:
return
self
.
kmeans_maximizations
(
whs
,
centers
,
assignments
)
pbar
=
tqdm
(
range
(
iters
),
desc
=
'Cluster anchors with k-means algorithm'
)
for
_
in
pbar
:
# E step
converged
,
assignments
=
self
.
kmeans_expectation
(
whs
,
centers
,
assignments
)
if
converged
:
break
# M step
centers
=
self
.
kmeans_maximizations
(
whs
,
centers
,
assignments
)
ious
=
self
.
metric
(
whs
,
centers
)
pbar
.
desc
=
'avg_iou: %.4f'
%
(
ious
.
max
(
1
).
mean
())
centers
=
sorted
(
centers
,
key
=
lambda
x
:
x
[
0
]
*
x
[
1
])
return
centers
class
YOLOv5AnchorCluster
(
BaseAnchorCluster
):
def
__init__
(
self
,
n
,
dataset
,
size
,
cache_path
,
cache
,
iters
=
300
,
gen_iters
=
1000
,
thresh
=
0.25
,
verbose
=
True
):
super
(
YOLOv5AnchorCluster
,
self
).
__init__
(
n
,
cache_path
,
cache
,
verbose
=
verbose
)
"""
YOLOv5 Anchor Cluster
Reference:
https://github.com/ultralytics/yolov5/blob/master/utils/general.py
Args:
n (int): number of clusters
dataset (DataSet): DataSet instance, VOC or COCO
size (list): [w, h]
cache_path (str): cache directory path
cache (bool): whether using cache
iters (int): iters of kmeans algorithm
gen_iters (int): iters of genetic algorithm
threshold (float): anchor scale threshold
verbose (bool): whether print results
"""
self
.
dataset
=
dataset
self
.
size
=
size
self
.
iters
=
iters
self
.
gen_iters
=
gen_iters
self
.
thresh
=
thresh
def
print_result
(
self
,
centers
):
whs
=
self
.
whs
centers
=
centers
[
np
.
argsort
(
centers
.
prod
(
1
))]
x
,
best
=
self
.
metric
(
whs
,
centers
)
bpr
,
aat
=
(
best
>
self
.
thresh
).
mean
(),
(
x
>
self
.
thresh
).
mean
()
*
self
.
n
logger
.
info
(
'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr'
%
(
self
.
thresh
,
bpr
,
aat
))
logger
.
info
(
'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: '
%
(
self
.
n
,
self
.
size
,
x
.
mean
(),
best
.
mean
(),
x
[
x
>
self
.
thresh
].
mean
()))
logger
.
info
(
'%d anchor cluster result: [w, h]'
%
self
.
n
)
for
w
,
h
in
centers
:
logger
.
info
(
'[%d, %d]'
%
(
round
(
w
),
round
(
h
)))
def
metric
(
self
,
whs
,
centers
):
r
=
whs
[:,
None
]
/
centers
[
None
]
x
=
np
.
minimum
(
r
,
1.
/
r
).
min
(
2
)
return
x
,
x
.
max
(
1
)
def
fitness
(
self
,
whs
,
centers
):
_
,
best
=
self
.
metric
(
whs
,
centers
)
return
(
best
*
(
best
>
self
.
thresh
)).
mean
()
def
calc_anchors
(
self
):
self
.
whs
=
self
.
whs
*
self
.
shapes
/
self
.
shapes
.
max
(
1
,
keepdims
=
True
)
*
np
.
array
([
self
.
size
])
wh0
=
self
.
whs
i
=
(
wh0
<
3.0
).
any
(
1
).
sum
()
if
i
:
logger
.
warn
(
'Extremely small objects found. %d of %d'
'labels are < 3 pixels in width or height'
%
(
i
,
len
(
wh0
)))
wh
=
wh0
[(
wh0
>=
2.0
).
any
(
1
)]
logger
.
info
(
'Running kmeans for %g anchors on %g points...'
%
(
self
.
n
,
len
(
wh
)))
s
=
wh
.
std
(
0
)
centers
,
dist
=
kmeans
(
wh
/
s
,
self
.
n
,
iter
=
self
.
iters
)
centers
*=
s
f
,
sh
,
mp
,
s
=
self
.
fitness
(
wh
,
centers
),
centers
.
shape
,
0.9
,
0.1
pbar
=
tqdm
(
range
(
self
.
gen_iters
),
desc
=
'Evolving anchors with Genetic Algorithm'
)
for
_
in
pbar
:
v
=
np
.
ones
(
sh
)
while
(
v
==
1
).
all
():
v
=
((
np
.
random
.
random
(
sh
)
<
mp
)
*
np
.
random
.
random
()
*
np
.
random
.
randn
(
*
sh
)
*
s
+
1
).
clip
(
0.3
,
3.0
)
new_centers
=
(
centers
.
copy
()
*
v
).
clip
(
min
=
2.0
)
new_f
=
self
.
fitness
(
wh
,
new_centers
)
if
new_f
>
f
:
f
,
centers
=
new_f
,
new_centers
.
copy
()
pbar
.
desc
=
'Evolving anchors with Genetic Algorithm: fitness = %.4f'
%
f
return
centers
def
main
():
parser
=
ArgsParser
()
parser
.
add_argument
(
'--n'
,
'-n'
,
default
=
9
,
type
=
int
,
help
=
'num of clusters'
)
parser
.
add_argument
(
'--iters'
,
'-i'
,
default
=
1000
,
type
=
int
,
help
=
'num of iterations for kmeans'
)
parser
.
add_argument
(
'--gen_iters'
,
'-gi'
,
default
=
1000
,
type
=
int
,
help
=
'num of iterations for genetic algorithm'
)
parser
.
add_argument
(
'--thresh'
,
'-t'
,
default
=
0.25
,
type
=
float
,
help
=
'anchor scale threshold'
)
parser
.
add_argument
(
'--verbose'
,
'-v'
,
default
=
True
,
type
=
bool
,
help
=
'whether print result'
)
parser
.
add_argument
(
'--size'
,
'-s'
,
default
=
None
,
type
=
str
,
help
=
'image size: w,h, using comma as delimiter'
)
parser
.
add_argument
(
'--method'
,
'-m'
,
default
=
'v2'
,
type
=
str
,
help
=
'cluster method, [v2, v5] are supported now'
)
parser
.
add_argument
(
'--cache_path'
,
default
=
'cache'
,
type
=
str
,
help
=
'cache path'
)
parser
.
add_argument
(
'--cache'
,
action
=
'store_true'
,
help
=
'whether use cache'
)
FLAGS
=
parser
.
parse_args
()
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
check_config
(
cfg
)
# check if set use_gpu=True in paddlepaddle cpu version
check_gpu
(
cfg
.
use_gpu
)
# check if paddlepaddle version is satisfied
check_version
()
# get dataset
dataset
=
cfg
[
'TrainReader'
][
'dataset'
]
if
FLAGS
.
size
:
if
','
in
FLAGS
.
size
:
size
=
list
(
map
(
int
,
FLAGS
.
size
.
split
(
','
)))
assert
len
(
size
)
==
2
,
"the format of size is incorrect"
else
:
size
=
int
(
FLAGS
.
size
)
size
=
[
size
,
size
]
elif
'image_shape'
in
cfg
[
'TrainReader'
][
'inputs_def'
]:
size
=
cfg
[
'TrainReader'
][
'inputs_def'
][
'image_shape'
][
1
:]
else
:
raise
ValueError
(
'size is not specified'
)
if
FLAGS
.
method
==
'v2'
:
cluster
=
YOLOv2AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
verbose
)
elif
FLAGS
.
method
==
'v5'
:
cluster
=
YOLOv5AnchorCluster
(
FLAGS
.
n
,
dataset
,
size
,
FLAGS
.
cache_path
,
FLAGS
.
cache
,
FLAGS
.
iters
,
FLAGS
.
gen_iters
,
FLAGS
.
thresh
,
FLAGS
.
verbose
)
else
:
raise
ValueError
(
'cluster method: %s is not supported'
%
FLAGS
.
method
)
anchors
=
cluster
()
if
__name__
==
"__main__"
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录