Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
0531edf9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
0531edf9
编写于
1月 26, 2018
作者:
K
kavyasrinet
提交者:
GitHub
1月 26, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Adding distributed training for dynamic_lstm (#7903)
上级
9b6387e7
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
135 addition
and
0 deletion
+135
-0
python/paddle/v2/fluid/tests/book_distribute/notest_understand_sentiment_dynamic_lstm.py
...ok_distribute/notest_understand_sentiment_dynamic_lstm.py
+135
-0
未找到文件。
python/paddle/v2/fluid/tests/book_distribute/notest_understand_sentiment_dynamic_lstm.py
0 → 100644
浏览文件 @
0531edf9
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
os
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
def
stacked_lstm_net
(
data
,
label
,
input_dim
,
class_dim
=
2
,
emb_dim
=
128
,
hid_dim
=
512
,
stacked_num
=
3
):
assert
stacked_num
%
2
==
1
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
input_dim
,
emb_dim
])
# add bias attr
# TODO(qijun) linear act
fc1
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
)
lstm1
,
cell1
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc1
,
size
=
hid_dim
)
inputs
=
[
fc1
,
lstm1
]
for
i
in
range
(
2
,
stacked_num
+
1
):
fc
=
fluid
.
layers
.
fc
(
input
=
inputs
,
size
=
hid_dim
)
lstm
,
cell
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc
,
size
=
hid_dim
,
is_reverse
=
(
i
%
2
)
==
0
)
inputs
=
[
fc
,
lstm
]
fc_last
=
fluid
.
layers
.
sequence_pool
(
input
=
inputs
[
0
],
pool_type
=
'max'
)
lstm_last
=
fluid
.
layers
.
sequence_pool
(
input
=
inputs
[
1
],
pool_type
=
'max'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_last
,
lstm_last
],
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.002
)
optimize_ops
,
params_grads
=
adam_optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
accuracy
,
accuracy
.
metrics
[
0
],
optimize_ops
,
params_grads
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
main
():
BATCH_SIZE
=
100
PASS_NUM
=
5
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
print
"loaded word dict successfully"
dict_dim
=
len
(
word_dict
)
class_dim
=
2
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
,
accuracy
,
acc_out
,
optimize_ops
,
params_grads
=
stacked_lstm_net
(
data
,
label
,
input_dim
=
dict_dim
,
class_dim
=
class_dim
)
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
1000
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
t
=
fluid
.
DistributeTranspiler
()
# all parameter server endpoints list for spliting parameters
pserver_endpoints
=
os
.
getenv
(
"PSERVERS"
)
# server endpoint for current node
current_endpoint
=
os
.
getenv
(
"SERVER_ENDPOINT"
)
# run as trainer or parameter server
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
# get the training role: trainer/pserver
t
.
transpile
(
optimize_ops
,
params_grads
,
pservers
=
pserver_endpoints
,
trainers
=
2
)
if
training_role
==
"PSERVER"
:
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
pserver_startup
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
exe
.
run
(
pserver_startup
)
exe
.
run
(
pserver_prog
)
elif
training_role
==
"TRAINER"
:
exe
.
run
(
fluid
.
default_startup_program
())
trainer_prog
=
t
.
get_trainer_program
()
for
pass_id
in
xrange
(
PASS_NUM
):
accuracy
.
reset
(
exe
)
for
data
in
train_data
():
cost_val
,
acc_val
=
exe
.
run
(
trainer_prog
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc_out
])
pass_acc
=
accuracy
.
eval
(
exe
)
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
)
+
" pass_acc="
+
str
(
pass_acc
))
if
cost_val
<
1.0
and
acc_val
>
0.8
:
exit
(
0
)
else
:
print
(
"environment var TRAINER_ROLE should be TRAINER os PSERVER"
)
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录