未验证 提交 04db2d53 编写于 作者: F Feng Ni 提交者: GitHub

[doc] fix doc typo and dead links (#7383)

* fix dead links, test=document_fix

* fix docs, test=document_fix
上级 a6219af3
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
PaddleDetection中提供了SDE和JDE两个系列的多种算法实现: PaddleDetection中提供了SDE和JDE两个系列的多种算法实现:
- SDE - SDE
- [ByteTrack](./bytetrack) - [ByteTrack](./bytetrack)
- [OC-SORT](./ocsort)
- [DeepSORT](./deepsort) - [DeepSORT](./deepsort)
- JDE - JDE
- [JDE](./jde) - [JDE](./jde)
...@@ -91,6 +92,7 @@ pip install lap motmetrics sklearn filterpy ...@@ -91,6 +92,7 @@ pip install lap motmetrics sklearn filterpy
## 模型库和选型 ## 模型库和选型
- 基础模型 - 基础模型
- [ByteTrack](bytetrack/README_cn.md) - [ByteTrack](bytetrack/README_cn.md)
- [OC-SORT](ocsort/README_cn.md)
- [DeepSORT](deepsort/README_cn.md) - [DeepSORT](deepsort/README_cn.md)
- [JDE](jde/README_cn.md) - [JDE](jde/README_cn.md)
- [FairMOT](fairmot/README_cn.md) - [FairMOT](fairmot/README_cn.md)
...@@ -109,8 +111,8 @@ pip install lap motmetrics sklearn filterpy ...@@ -109,8 +111,8 @@ pip install lap motmetrics sklearn filterpy
| MOT方式 | 经典算法 | 算法流程 | 数据集要求 | 其他特点 | | MOT方式 | 经典算法 | 算法流程 | 数据集要求 | 其他特点 |
| :--------------| :--------------| :------- | :----: | :----: | | :--------------| :--------------| :------- | :----: | :----: |
| SDE系列 | DeepSORT,ByteTrack | 分离式,两个独立模型权重先检测后ReID,也可不加ReID | 检测和ReID数据相对独立,不加ReID时即纯检测数据集 |检测和ReID可分别调优,鲁棒性较高,AI竞赛常用| | SDE系列 | DeepSORT,ByteTrack,OC-SORT | 分离式,两个独立模型权重先检测后ReID,也可不加ReID | 检测和ReID数据相对独立,不加ReID时即纯检测数据集 |检测和ReID可分别调优,鲁棒性较高,AI竞赛常用|
| JDE系列 | FairMOT | 联合式,一个模型权重端到端同时检测和ReID | 必须同时具有检测和ReID标注 | 检测和ReID联合训练,不易调优,泛化性不强| | JDE系列 | FairMOT,JDE | 联合式,一个模型权重端到端同时检测和ReID | 必须同时具有检测和ReID标注 | 检测和ReID联合训练,不易调优,泛化性不强|
**注意:** **注意:**
- 由于数据标注的成本较大,建议选型前优先考虑**数据集要求**,如果数据集只有检测框标注而没有ReID标注,是无法使用JDE系列算法训练的,更推荐使用SDE系列; - 由于数据标注的成本较大,建议选型前优先考虑**数据集要求**,如果数据集只有检测框标注而没有ReID标注,是无法使用JDE系列算法训练的,更推荐使用SDE系列;
......
...@@ -60,6 +60,7 @@ pip install -r requirements.txt ...@@ -60,6 +60,7 @@ pip install -r requirements.txt
## Model Zoo ## Model Zoo
- Base models - Base models
- [ByteTrack](bytetrack/README.md) - [ByteTrack](bytetrack/README.md)
- [OC-SORT](ocsort/README.md)
- [DeepSORT](deepsort/README.md) - [DeepSORT](deepsort/README.md)
- [JDE](jde/README.md) - [JDE](jde/README.md)
- [FairMOT](fairmot/README.md) - [FairMOT](fairmot/README.md)
......
...@@ -156,7 +156,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d ...@@ -156,7 +156,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/fairmot/fairmot_d
### 3. Inference ### 3. Inference
Inference a vidoe on single GPU with following command: Inference a video on single GPU with following command:
```bash ```bash
# inference on video and save a video # inference on video and save a video
......
...@@ -82,7 +82,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53 ...@@ -82,7 +82,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53
### 3. Inference ### 3. Inference
Inference a vidoe on single GPU with following command: Inference a video on single GPU with following command:
```bash ```bash
# inference on video and save a video # inference on video and save a video
......
...@@ -80,7 +80,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairm ...@@ -80,7 +80,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/mcfairmot/mcfairm
- Tracking results will be saved in `{output_dir}/mot_results/`, and every sequence has one txt file, each line of the txt file is `frame,id,x1,y1,w,h,score,cls_id,-1,-1`, and you can set `{output_dir}` by `--output_dir`. - Tracking results will be saved in `{output_dir}/mot_results/`, and every sequence has one txt file, each line of the txt file is `frame,id,x1,y1,w,h,score,cls_id,-1,-1`, and you can set `{output_dir}` by `--output_dir`.
### 3. Inference ### 3. Inference
Inference a vidoe on single GPU with following command: Inference a video on single GPU with following command:
```bash ```bash
# inference on video and save a video # inference on video and save a video
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams --video_file={your video name}.mp4 --save_videos CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/mcfairmot/mcfairmot_dla34_30e_1088x608_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/mcfairmot_dla34_30e_1088x608_visdrone.pdparams --video_file={your video name}.mp4 --save_videos
......
简体中文 | [English](README.md)
# OC_SORT (Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking)
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [快速开始](#快速开始)
- [引用](#引用)
## 简介
[OC_SORT](https://arxiv.org/abs/2203.14360)(Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking)。此处提供了几个常用检测器的配置作为参考。由于训练数据集、输入尺度、训练epoch数、NMS阈值设置等的不同均会导致模型精度和性能的差异,请自行根据需求进行适配。
## 模型库
### OC_SORT在MOT-17 half Val Set上结果
| 检测训练数据集 | 检测器 | 输入尺度 | ReID | 检测mAP | MOTA | IDF1 | FPS | 配置文件 |
| :-------- | :----- | :----: | :----:|:------: | :----: |:-----: |:----:|:----: |
| MOT-17 half train | PP-YOLOE-l | 640x640 | - | 52.9 | 50.1 | 62.6 | - |[配置文件](./bytetrack_ppyoloe.yml) |
| **mot17_ch** | YOLOX-x | 800x1440| - | 61.9 | 75.5 | 77.0 | - |[配置文件](./ocsort_yolox.yml) |
**注意:**
- 模型权重下载链接在配置文件中的```det_weights``````reid_weights```,运行验证的命令即可自动下载,OC_SORT默认不需要```reid_weights```权重。
- **MOT17-half train**是MOT17的train序列(共7个)每个视频的前一半帧的图片和标注组成的数据集,而为了验证精度可以都用**MOT17-half val**数据集去评估,它是每个视频的后一半帧组成的,数据集可以从[此链接](https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip)下载,并解压放在`dataset/mot/`文件夹下。
- **mix_mot_ch**数据集,是MOT17、CrowdHuman组成的联合数据集,**mix_det**是MOT17、CrowdHuman、Cityscapes、ETHZ组成的联合数据集,数据集整理的格式和目录可以参考[此链接](https://github.com/ifzhang/ByteTrack#data-preparation),最终放置于`dataset/mot/`目录下。为了验证精度可以都用**MOT17-half val**数据集去评估。
- OC_SORT的训练是单独的检测器训练MOT数据集,推理是组装跟踪器去评估MOT指标,单独的检测模型也可以评估检测指标。
- OC_SORT的导出部署,是单独导出检测模型,再组装跟踪器运行的,参照[PP-Tracking](../../../deploy/pptracking/python)
- OC_SORT是PP-Human和PP-Vehicle等Pipeline分析项目跟踪方向的主要方案,具体使用参照[Pipeline](../../../deploy/pipeline)[MOT](../../../deploy/pipeline/docs/tutorials/pphuman_mot.md)
## 快速开始
### 1. 训练
通过如下命令一键式启动训练和评估
```bash
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp
```
### 2. 评估
#### 2.1 评估检测效果
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml
```
**注意:**
- 评估检测使用的是```tools/eval.py```, 评估跟踪使用的是```tools/eval_mot.py```
#### 2.2 评估跟踪效果
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/ocsort/ocsort_ppyoloe.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/ocsort/ocsort_yolox.yml --scaled=True
```
**注意:**
- `--scaled`表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE YOLOv3则为False,如果使用通用检测模型则为True, 默认值是False。
- 跟踪结果会存于`{output_dir}/mot_results/`中,里面每个视频序列对应一个txt,每个txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`, 此外`{output_dir}`可通过`--output_dir`设置。
### 3. 预测
使用单个GPU通过如下命令预测一个视频,并保存为视频
```bash
# 下载demo视频
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/ocsort/ocsort_yolox.yml --video_file=mot17_demo.mp4 --scaled=True --save_videos
```
**注意:**
- 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
- `--scaled`表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE的YOLOv3则为False,如果使用通用检测模型则为True。
### 4. 导出预测模型
Step 1:导出检测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/yolox_x_24e_800x1440_mix_det.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/yolox_x_24e_800x1440_mix_det/ --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file=mot17_demo.mp4 --device=GPU --save_mot_txts
```
**注意:**
- 运行前需要手动修改`tracker_config.yml`的跟踪器类型为`type: OCSORTTracker`
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`(对每个视频保存一个txt)或`--save_mot_txt_per_img`(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。
- 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`
## 引用
```
@article{cao2022observation,
title={Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking},
author={Cao, Jinkun and Weng, Xinshuo and Khirodkar, Rawal and Pang, Jiangmiao and Kitani, Kris},
journal={arXiv preprint arXiv:2203.14360},
year={2022}
}
```
README_cn.md
\ No newline at end of file
简体中文 | [English](README.md)
# OC_SORT (Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking)
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [快速开始](#快速开始)
- [引用](#引用)
## 简介
[OC_SORT](https://arxiv.org/abs/2203.14360)(Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking)。此处提供了几个常用检测器的配置作为参考。由于训练数据集、输入尺度、训练epoch数、NMS阈值设置等的不同均会导致模型精度和性能的差异,请自行根据需求进行适配。
## 模型库
### OC_SORT在MOT-17 half Val Set上结果
| 检测训练数据集 | 检测器 | 输入尺度 | ReID | 检测mAP | MOTA | IDF1 | FPS | 配置文件 |
| :-------- | :----- | :----: | :----:|:------: | :----: |:-----: |:----:|:----: |
| MOT-17 half train | PP-YOLOE-l | 640x640 | - | 52.9 | 50.1 | 62.6 | - |[配置文件](./ocsort_ppyoloe.yml) |
| **mot17_ch** | YOLOX-x | 800x1440| - | 61.9 | 75.5 | 77.0 | - |[配置文件](./ocsort_yolox.yml) |
**注意:**
- 模型权重下载链接在配置文件中的```det_weights``````reid_weights```,运行验证的命令即可自动下载,OC_SORT默认不需要```reid_weights```权重。
- **MOT17-half train**是MOT17的train序列(共7个)每个视频的前一半帧的图片和标注组成的数据集,而为了验证精度可以都用**MOT17-half val**数据集去评估,它是每个视频的后一半帧组成的,数据集可以从[此链接](https://bj.bcebos.com/v1/paddledet/data/mot/MOT17.zip)下载,并解压放在`dataset/mot/`文件夹下。
- **mix_mot_ch**数据集,是MOT17、CrowdHuman组成的联合数据集,**mix_det**是MOT17、CrowdHuman、Cityscapes、ETHZ组成的联合数据集,数据集整理的格式和目录可以参考[此链接](https://github.com/ifzhang/ByteTrack#data-preparation),最终放置于`dataset/mot/`目录下。为了验证精度可以都用**MOT17-half val**数据集去评估。
- OC_SORT的训练是单独的检测器训练MOT数据集,推理是组装跟踪器去评估MOT指标,单独的检测模型也可以评估检测指标。
- OC_SORT的导出部署,是单独导出检测模型,再组装跟踪器运行的,参照[PP-Tracking](../../../deploy/pptracking/python)
- OC_SORT是PP-Human和PP-Vehicle等Pipeline分析项目跟踪方向的主要方案,具体使用参照[Pipeline](../../../deploy/pipeline)[MOT](../../../deploy/pipeline/docs/tutorials/pphuman_mot.md)
## 快速开始
### 1. 训练
通过如下命令一键式启动训练和评估
```bash
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp
```
### 2. 评估
#### 2.1 评估检测效果
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml
```
**注意:**
- 评估检测使用的是```tools/eval.py```, 评估跟踪使用的是```tools/eval_mot.py```
#### 2.2 评估跟踪效果
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/ocsort/ocsort_ppyoloe.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/ocsort/ocsort_yolox.yml --scaled=True
```
**注意:**
- `--scaled`表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE YOLOv3则为False,如果使用通用检测模型则为True, 默认值是False。
- 跟踪结果会存于`{output_dir}/mot_results/`中,里面每个视频序列对应一个txt,每个txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`, 此外`{output_dir}`可通过`--output_dir`设置。
### 3. 预测
使用单个GPU通过如下命令预测一个视频,并保存为视频
```bash
# 下载demo视频
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/ocsort/ocsort_yolox.yml --video_file=mot17_demo.mp4 --scaled=True --save_videos
```
**注意:**
- 请先确保已经安装了[ffmpeg](https://ffmpeg.org/ffmpeg.html), Linux(Ubuntu)平台可以直接用以下命令安装:`apt-get update && apt-get install -y ffmpeg`
- `--scaled`表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE的YOLOv3则为False,如果使用通用检测模型则为True。
### 4. 导出预测模型
Step 1:导出检测模型
```bash
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/yolox_x_24e_800x1440_mix_det.pdparams
```
### 5. 用导出的模型基于Python去预测
```bash
python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/yolox_x_24e_800x1440_mix_det/ --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file=mot17_demo.mp4 --device=GPU --save_mot_txts
```
**注意:**
- 运行前需要手动修改`tracker_config.yml`的跟踪器类型为`type: OCSORTTracker`
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加`--save_mot_txts`(对每个视频保存一个txt)或`--save_mot_txt_per_img`(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或`--save_images`表示保存跟踪结果可视化图片。
- 跟踪结果txt文件每行信息是`frame,id,x1,y1,w,h,score,-1,-1,-1`
## 引用
```
@article{cao2022observation,
title={Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking},
author={Cao, Jinkun and Weng, Xinshuo and Khirodkar, Rawal and Pang, Jiangmiao and Kitani, Kris},
journal={arXiv preprint arXiv:2203.14360},
year={2022}
}
```
...@@ -73,7 +73,7 @@ pip install paddledet ...@@ -73,7 +73,7 @@ pip install paddledet
### 3.2 准备数据集 ### 3.2 准备数据集
本案例默认以COCO数据进行全量化实验,如果自定义数据,可将数据按照COCO数据的标准准备;其他自定义数据,可以参考[PaddleDetection数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/PrepareDataSet.md) 来准备。 本案例默认以COCO数据进行全量化实验,如果自定义数据,可将数据按照COCO数据的标准准备;其他自定义数据,可以参考[PaddleDetection数据准备文档](../../docs/tutorials/data/PrepareDataSet.md) 来准备。
以PicoDet-S-NPU模型为例,如果已经准备好数据集,请直接修改[picodet_reader.yml](./configs/picodet_reader.yml)`EvalDataset``dataset_dir`字段为自己数据集路径即可。 以PicoDet-S-NPU模型为例,如果已经准备好数据集,请直接修改[picodet_reader.yml](./configs/picodet_reader.yml)`EvalDataset``dataset_dir`字段为自己数据集路径即可。
......
...@@ -94,7 +94,7 @@ PP-PicoDet模型有如下特点: ...@@ -94,7 +94,7 @@ PP-PicoDet模型有如下特点:
<summary>安装</summary> <summary>安装</summary>
- [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md) - [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [准备数据文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md) - [准备数据文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/data/PrepareDataSet_en.md)
</details> </details>
......
...@@ -83,7 +83,7 @@ We developed a series of lightweight models, named `PP-PicoDet`. Because of the ...@@ -83,7 +83,7 @@ We developed a series of lightweight models, named `PP-PicoDet`. Because of the
<summary>Installation</summary> <summary>Installation</summary>
- [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md) - [Installation guide](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md) - [Prepare dataset](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/data/PrepareDataSet_en.md)
</details> </details>
......
...@@ -124,7 +124,7 @@ pip install -r requirements.txt ...@@ -124,7 +124,7 @@ pip install -r requirements.txt
### 2. 数据准备 ### 2. 数据准备
用户需要准备训练数据集,建议标注文件使用COCO数据格式。如果使用lableme或者VOC数据格式,先使用[格式转换脚本](../../tools/x2coco.py)将标注格式转化为COCO,详细数据准备文档请参考[文档](../../docs/tutorials/PrepareDataSet.md) 用户需要准备训练数据集,建议标注文件使用COCO数据格式。如果使用lableme或者VOC数据格式,先使用[格式转换脚本](../../tools/x2coco.py)将标注格式转化为COCO,详细数据准备文档请参考[文档](../../docs/tutorials/data/PrepareDataSet.md)
本文档以新能源电池工业质检子数据集为例展开,数据下载[链接](https://bj.bcebos.com/v1/paddle-smrt/data/battery_mini.zip) 本文档以新能源电池工业质检子数据集为例展开,数据下载[链接](https://bj.bcebos.com/v1/paddle-smrt/data/battery_mini.zip)
......
...@@ -76,7 +76,7 @@ pip install paddledet ...@@ -76,7 +76,7 @@ pip install paddledet
#### 3.2 准备数据集 #### 3.2 准备数据集
本案例默认以COCO数据进行自动压缩实验,如果自定义COCO数据,或者其他格式数据,请参考[数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/docs/tutorials/PrepareDataSet.md) 来准备数据。 本案例默认以COCO数据进行自动压缩实验,如果自定义COCO数据,或者其他格式数据,请参考[数据准备文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/docs/tutorials/data/PrepareDataSet.md) 来准备数据。
如果数据集为非COCO格式数据,请修改[configs](./configs)中reader配置文件中的Dataset字段。 如果数据集为非COCO格式数据,请修改[configs](./configs)中reader配置文件中的Dataset字段。
......
...@@ -90,7 +90,7 @@ COCO datasets are currently divided into COCO2014 and COCO2017, which are mainly ...@@ -90,7 +90,7 @@ COCO datasets are currently divided into COCO2014 and COCO2017, which are mainly
│ ├── 000000000285.jpg │ ├── 000000000285.jpg
│ │ ... │ │ ...
``` ```
class `COCODataSet` is defined and registered on `source/coco.py`. And implements the parse the dataset method, called [COCO API](https://github.com/cocodataset/cocoapi) to load and parse COCO format data source ` roidbs ` and ` cname2cid `, See `source/coco.py` source code for details. Converting other datasets to COCO format can be done by referring to [converting User Data to COCO Data](../tutorials/PrepareDataSet_en.md#convert-user-data-to-coco-data) class `COCODataSet` is defined and registered on `source/coco.py`. And implements the parse the dataset method, called [COCO API](https://github.com/cocodataset/cocoapi) to load and parse COCO format data source ` roidbs ` and ` cname2cid `, See `source/coco.py` source code for details. Converting other datasets to COCO format can be done by referring to [converting User Data to COCO Data](../tutorials/data/PrepareDataSet_en.md#convert-user-data-to-coco-data)
And implements the parse the dataset method, called [COCO API](https://github.com/cocodataset/cocoapi) to load and parse COCO format data source `roidbs` and `cname2cid`, See `source/coco.py` source code for details. Converting other datasets to COCO format can be done by referring to [converting User Data to COCO Data](../tutorials/data/PrepareDetDataSet_en.md#convert-user-data-to-coco-data) And implements the parse the dataset method, called [COCO API](https://github.com/cocodataset/cocoapi) to load and parse COCO format data source `roidbs` and `cname2cid`, See `source/coco.py` source code for details. Converting other datasets to COCO format can be done by referring to [converting User Data to COCO Data](../tutorials/data/PrepareDetDataSet_en.md#convert-user-data-to-coco-data)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册