未验证 提交 03136f63 编写于 作者: W whs 提交者: GitHub

Merge pull request #4740 from wanghaoshuang/seq_expand_op

Seq expand op
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/seq_expand_op.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class SeqExpandOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"));
PADDLE_ENFORCE(ctx->HasOutput("Out"));
PADDLE_ENFORCE(ctx->HasInput("Y"));
framework::DDim out_dim;
out_dim = ctx->GetInputDim("Y");
ctx->ShareLoD("Y", "Out");
ctx->SetOutputDim("Out", out_dim);
}
};
class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
public:
SeqExpandOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor or LoDTensor) The input(X) of this operator can be a "
"LoDTensor or a base Tensor.");
AddInput("Y",
"(LoDTensor)The reference input(Y) of seq_expand op."
"It must be a LoDTensor with k-level(k>0)."
"The input(X) will be expanded according to LOD of input(Y)."
"The element numbers of last level in input(Y) "
"must be equal to dims[0] of input(X).");
AddOutput("Out",
"(LodTensor)The output of seq_expand op."
"The lod of output will be as same as input(Y)'s lod.");
AddComment(R"DOC(
Expand input(X) according to LOD of input(Y).
Case 1:
Given 2-level a LoDTensor input(X)
X.lod = [[0, 2, 3],
[0, 1, 3, 4]]
X.data = [a, b, c, d]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
Out.lod = [[0, 2, 4],
[0, 3, 6, 7, 8]]
Out.data = [a, a, a, b, b, b, c, d]
Out.dims = [8, 1]
Case 2:
Given a 0-level LoDTensor input(X)
X.data = [a, b, c]
X.lod = NULL
X.dims = [3, 1]
and input(Y)
Y.lod = [[0, 2, 3, 6]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 1-level LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [a, a, b, c, c, c]
Out.dims = [6, 1]
Case 3:
Given a 0-level LoDTensor input(X)
X.data = [[a, b], [c, d], [e, f]]
X.lod = NULL
X.dims = [3, 2]
and input(Y)
Y.lod = [[0, 2, 3, 6]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 1-level LoDTensor
Out.lod = [[0, 2, 3, 6]]
Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]]
Out.dims = [6, 2]
Case 4:
Given 2-level a LoDTensor input(X)
X.lod = [[0, 2, 3],
[0, 1, 3, 4]]
X.data = [a, b, c, d]
X.dims = [4, 1]
and input(Y)
Y.lod = [[0, 2, 4],
[0, 3, 6, 6, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
Out.lod = [[0, 2, 4],
[0, 3, 6, 6, 8]]
Out.data = [a, a, a, b, b, b, d, d]
Out.dims = [8, 1]
)DOC");
}
};
class SeqExpandOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"));
PADDLE_ENFORCE(ctx->HasInput("Out"));
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"The input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
auto x_grad_name = framework::GradVarName("X");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker,
seq_expand_grad, ops::SeqExpandOpGrad);
REGISTER_OP_CPU_KERNEL(seq_expand,
ops::SeqExpandKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
seq_expand_grad,
ops::SeqExpandGradKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/seq_expand_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(seq_expand,
ops::SeqExpandKernel<paddle::platform::GPUPlace, float>);
REGISTER_OP_GPU_KERNEL(
seq_expand_grad,
ops::SeqExpandGradKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/memory/memcpy.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
template <typename Place, typename T>
class SeqExpandKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<LoDTensor>("X");
auto* out = context.Output<LoDTensor>("Out");
const T* x_data = x->data<T>();
auto x_dims = x->dims();
auto* y = context.Input<LoDTensor>("Y");
PADDLE_ENFORCE_EQ(x_dims[0], y->lod().back().size() - 1,
"The size of last lod level in Input(Y)"
"must be equal to dims[0] of Input(X).");
out->set_lod(y->lod());
auto place = context.GetEigenDevice<Place>();
size_t element_len = framework::product(x_dims) / x_dims[0];
T* out_data = out->mutable_data<T>(context.GetPlace());
auto out_starts = out->lod().back();
for (size_t i = 0; i < out_starts.size() - 1; i++) {
int scale = out_starts[i + 1] - out_starts[i];
Eigen::TensorMap<
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
x_t(x_data, 1, element_len);
Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
out_t(out_data, scale, element_len);
Eigen::array<int, 2> cast({scale, 1});
out_t.device(place) = x_t.broadcast(cast);
x_data += element_len;
out_data += element_len * scale;
}
}
};
/*
*Given Grad(Out)
*
* Grad(Out).lod = [[0, 2],
* [0, 3, 6]]
* Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
* Then
* Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)]
* = [0.6, 1.5]
* Grad(X).lod = Input(X).lod
*
* */
template <typename Place, typename T>
class SeqExpandGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out"));
auto* x = context.Input<LoDTensor>("X");
auto* out = context.Input<LoDTensor>("Out");
auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X"));
auto out_last_level = out->lod().back();
d_x->set_lod(x->lod());
const T* d_out_data = d_out->data<T>();
T* d_x_data = d_x->mutable_data<T>(context.GetPlace());
size_t element_len = d_out->numel() / d_out->dims()[0];
for (size_t i = 0; i < out_last_level.size() - 1; ++i) {
size_t repeat = out_last_level[i + 1] - out_last_level[i];
Eigen::TensorMap<
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>>
d_out_t(d_out_data, static_cast<int>(repeat), element_len);
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>>
d_x_t(d_x_data, static_cast<int>(element_len));
auto place = context.GetEigenDevice<Place>();
d_x_t.device(place) = d_out_t.sum(Eigen::array<int, 1>({{0}}));
d_out_data += (repeat * element_len);
d_x_data += element_len;
}
}
};
} // namespace operators
} // namespace paddle
......@@ -68,12 +68,12 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
"The level should be less than the level number of inputs.")
.SetDefault(0);
AddComment(R"DOC(
The sequence_concat operator concatenates multiple LoDTensors.
It only supports sequence (LoD Tensor with level number is 1)
The sequence_concat operator concatenates multiple LoDTensors.
It only supports sequence (LoD Tensor with level number is 1)
or a nested sequence (LoD tensor with level number is 2) as its input.
- Case1:
If the axis is other than 0(here, axis is 1 and level is 1),
each input should have the same LoD information and the LoD
each input should have the same LoD information and the LoD
information of the output keeps the same as the input.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
......@@ -81,7 +81,7 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4)
- Case2:
If the axis is 0(here, leve is 0), the inputs are concatenated along
If the axis is 0(here, leve is 0), the inputs are concatenated along
time steps, the LoD information of the output need to re-compute.
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
......@@ -94,7 +94,7 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker {
LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4)
LoD(x1) = {{0,3,5}, {0,1,3,4,5}}; Dims(x1) = (5,3,4)
LoD(Out) = {{0,5,9}, {0,2,5,7,9}}; Dims(Out) = (9,3,4)
NOTE: The levels of all the inputs should be the same.
)DOC");
}
......
import unittest
import numpy as np
from op_test import OpTest
class TestSeqExpand(OpTest):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
y_lod = [[0, 1, 4, 8]]
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
def compute(self):
x = self.inputs['X']
x_data, x_lod = x if type(x) == tuple else (x, None)
n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0])
y_data, y_lod = self.inputs['Y']
repeats = [((y_lod[-1][i + 1] - y_lod[-1][i]))
for i in range(len(y_lod[-1]) - 1)]
out = x_data.repeat(repeats, axis=0)
self.outputs = {'Out': out}
def setUp(self):
self.op_type = 'seq_expand'
self.set_data()
self.compute()
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestSeqExpandCase1(TestSeqExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
x_lod = [[0, 2, 5]]
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
class TestSeqExpandCase2(TestSeqExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
x_lod = [[0, 1]]
y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
y_lod = [[0, 2]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
class TestSeqExpandCase3(TestSeqExpand):
def set_data(self):
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
x_lod = [[0, 1, 2, 3, 4]]
y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32')
y_lod = [[0, 2, 4, 4, 6]]
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册