Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
02fda711
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
02fda711
编写于
12月 23, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine sgd-op
上级
bb58a474
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
94 addition
and
83 deletion
+94
-83
paddle/operators/sgd_op.cc
paddle/operators/sgd_op.cc
+1
-35
paddle/operators/sgd_op.cu
paddle/operators/sgd_op.cu
+69
-31
paddle/operators/sgd_op.h
paddle/operators/sgd_op.h
+24
-17
未找到文件。
paddle/operators/sgd_op.cc
浏览文件 @
02fda711
...
@@ -61,43 +61,9 @@ $$param\_out = param - learning\_rate * grad$$
...
@@ -61,43 +61,9 @@ $$param\_out = param - learning\_rate * grad$$
}
}
};
};
template
<
typename
T
>
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
const
framework
::
Tensor
&
learning_rate
,
framework
::
Tensor
*
output
)
{
auto
in_height
=
input
.
height
();
auto
out_dims
=
output
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
input
.
value
();
auto
&
in_rows
=
input
.
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
output
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
output
->
data
<
T
>
();
auto
*
lr
=
learning_rate
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
in_row_numel
;
j
++
)
{
out_data
[
in_rows
[
i
]
*
in_row_numel
+
j
]
-=
lr
[
0
]
*
in_data
[
i
*
in_row_numel
+
j
];
}
}
}
};
template
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
SparseSGDFunctor
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OP_CPU_KERNEL
(
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
float
>
,
ops
::
SGDOpKernel
<
double
>
);
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/operators/sgd_op.cu
浏览文件 @
02fda711
...
@@ -20,6 +20,19 @@ namespace paddle {
...
@@ -20,6 +20,19 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
namespace
{
namespace
{
template
<
typename
T
>
__global__
void
SGDKernel
(
const
T
*
g
,
const
T
*
p
,
const
T
*
learning_rate
,
const
int
num
,
T
*
p_out
)
{
T
lr
=
learning_rate
[
0
];
int
grid_size
=
blockDim
.
x
*
gridDim
.
x
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
num
;
i
+=
grid_size
)
{
T
g_data
=
g
[
i
];
T
p_data
=
p
[
i
];
p_out
[
i
]
=
p_data
-
lr
*
g_data
;
}
}
template
<
typename
T
,
int
block_size
>
template
<
typename
T
,
int
block_size
>
__global__
void
SparseSGDFunctorKernel
(
const
T
*
selected_rows
,
__global__
void
SparseSGDFunctorKernel
(
const
T
*
selected_rows
,
const
int64_t
*
rows
,
const
int64_t
*
rows
,
...
@@ -41,40 +54,65 @@ __global__ void SparseSGDFunctorKernel(const T* selected_rows,
...
@@ -41,40 +54,65 @@ __global__ void SparseSGDFunctorKernel(const T* selected_rows,
}
// namespace
}
// namespace
template
<
typename
T
>
template
<
typename
T
>
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
class
SGDOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
public:
const
framework
::
SelectedRows
&
input
,
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
Tensor
&
learning_rate
,
auto
*
param
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
);
framework
::
Tensor
*
output
)
{
auto
*
param_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
in_height
=
input
.
height
();
auto
*
learning_rate
=
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
);
auto
out_dims
=
output
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
// Actually, all tensors are LoDTensor except SelectedRows.
auto
&
in_value
=
input
.
value
();
if
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
&
in_rows
=
input
.
rows
();
param_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
grad
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
);
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
auto
*
grad_data
=
grad
->
data
<
T
>
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
output
->
numel
()
/
in_height
);
auto
*
param_data
=
param
->
data
<
T
>
();
auto
*
param_out_data
=
param_out
->
data
<
T
>
();
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
output
->
data
<
T
>
();
int
block
=
512
;
int
grid
=
(
param
->
numel
()
+
block
-
1
)
/
block
;
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
SGDKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
dim3
grid
(
1
,
in_rows
.
size
());
grad_data
,
param_data
,
learning_rate
->
data
<
T
>
(),
param
->
numel
(),
SparseSGDFunctorKernel
<
T
,
256
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
param_out_data
);
in_data
,
in_rows
.
data
(),
learning_rate
.
data
<
T
>
(),
out_data
,
in_row_numel
);
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
in_height
=
grad
->
height
();
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
const
int
block_size
=
256
;
dim3
threads
(
block_size
,
1
);
dim3
grid
(
1
,
in_rows
.
size
());
SparseSGDFunctorKernel
<
T
,
256
><<<
grid
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
in_data
,
in_rows
.
data
(),
learning_rate
->
data
<
T
>
(),
out_data
,
in_row_numel
);
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
}
};
};
template
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
SparseSGDFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
sgd
,
ops
::
SGDOpCUDAKernel
<
float
>
,
sgd
,
ops
::
SGDOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
SGDOpCUDAKernel
<
double
>
);
ops
::
SGDOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/sgd_op.h
浏览文件 @
02fda711
...
@@ -20,15 +20,7 @@ limitations under the License. */
...
@@ -20,15 +20,7 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
struct
SparseSGDFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
SelectedRows
&
input
,
const
framework
::
Tensor
&
learning_rate
,
framework
::
Tensor
*
output
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
SGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
SGDOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
@@ -45,21 +37,36 @@ class SGDOpKernel : public framework::OpKernel<T> {
...
@@ -45,21 +37,36 @@ class SGDOpKernel : public framework::OpKernel<T> {
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
p
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
g
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
grad
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
o
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
learning_rate
);
auto
*
lr
=
learning_rate
->
data
<
T
>
();
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
grad
->
numel
());
o
=
p
-
lr
[
0
]
*
g
;
o
.
device
(
place
)
=
p
-
lr
.
broadcast
(
grad_dsize
)
*
g
;
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
}
else
if
(
grad_var
->
IsType
<
framework
::
SelectedRows
>
())
{
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// TODO(qijun): In Sparse SGD operator, in-place update is enforced.
// This manual optimization brings difficulty to track data dependency.
// This manual optimization brings difficulty to track data dependency.
// It's better to find a more elegant solution.
// It's better to find a more elegant solution.
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
PADDLE_ENFORCE_EQ
(
param
,
param_out
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
auto
*
grad
=
ctx
.
Input
<
framework
::
SelectedRows
>
(
"Grad"
);
SparseSGDFunctor
<
DeviceContext
,
T
>
functor
;
functor
(
ctx
.
template
device_context
<
DeviceContext
>(),
*
grad
,
auto
in_height
=
grad
->
height
();
*
learning_rate
,
param_out
);
auto
out_dims
=
param_out
->
dims
();
PADDLE_ENFORCE_EQ
(
in_height
,
out_dims
[
0
]);
auto
&
in_value
=
grad
->
value
();
auto
&
in_rows
=
grad
->
rows
();
int64_t
in_row_numel
=
in_value
.
numel
()
/
in_rows
.
size
();
PADDLE_ENFORCE_EQ
(
in_row_numel
,
param_out
->
numel
()
/
in_height
);
auto
*
in_data
=
in_value
.
data
<
T
>
();
auto
*
out_data
=
param_out
->
data
<
T
>
();
auto
*
lr
=
learning_rate
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
in_rows
.
size
();
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
in_row_numel
;
j
++
)
{
out_data
[
in_rows
[
i
]
*
in_row_numel
+
j
]
-=
lr
[
0
]
*
in_data
[
i
*
in_row_numel
+
j
];
}
}
}
else
{
}
else
{
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
PADDLE_THROW
(
"Unsupported Variable Type of Grad"
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录