提交 018e2f3a 编写于 作者: T tangwei12

Merge branch 'dis_ckpt_fix' of github.com:seiriosPlus/Paddle into dis_ckpt_fix

paddle.fluid.Variable.__init__ ArgSpec(args=['self', 'block', 'type', 'name', 'shape', 'dtype', 'lod_level', 'capacity', 'persistable', 'error_clip', 'stop_gradient', 'is_data'], varargs=None, keywords='kwargs', defaults=(VarType.LOD_TENSOR, None, None, None, None, None, None, None, False, False))
paddle.fluid.Variable.astype ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Variable.set_desc ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Variable.set_error_clip ArgSpec(args=['self', 'error_clip'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Variable.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.Program.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.block ArgSpec(args=['self', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.clone ArgSpec(args=['self', 'for_test'], varargs=None, keywords=None, defaults=(False,))
......@@ -33,8 +28,6 @@ paddle.fluid.Operator.set_attr ArgSpec(args=['self', 'name', 'val'], varargs=Non
paddle.fluid.Operator.to_string ArgSpec(args=['self', 'throw_on_error'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.__init__ ArgSpec(args=['self', 'block', 'shape', 'dtype'], varargs=None, keywords='kwargs', defaults=None)
paddle.fluid.Parameter.astype ArgSpec(args=['self', 'dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.set_desc ArgSpec(args=['self', 'input'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.set_error_clip ArgSpec(args=['self', 'error_clip'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Parameter.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
......@@ -42,8 +35,7 @@ paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', def
paddle.fluid.get_var ArgSpec(args=['name', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.as_lodtensor ArgSpec(args=['self', 'data'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.begin_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.end_pass ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False))
paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
......@@ -207,31 +199,23 @@ paddle.fluid.layers.argsort ArgSpec(args=['input', 'axis', 'name'], varargs=None
paddle.fluid.layers.ones ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.zeros ArgSpec(args=['shape', 'dtype', 'force_cpu'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.reverse ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.split_lod_tensor ArgSpec(args=['input', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.merge_lod_tensor ArgSpec(args=['in_true', 'in_false', 'x', 'mask', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.While.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.While.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.While.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Switch.case ArgSpec(args=['self', 'condition'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Switch.default ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.lod_rank_table ArgSpec(args=['x', 'level'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.max_sequence_len ArgSpec(args=['rank_table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.lod_tensor_to_array ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.array_to_lod_tensor ArgSpec(args=['x', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.increment ArgSpec(args=['x', 'value', 'in_place'], varargs=None, keywords=None, defaults=(1.0, True))
paddle.fluid.layers.array_write ArgSpec(args=['x', 'i', 'array'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.create_array ArgSpec(args=['dtype'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.less_than ArgSpec(args=['x', 'y', 'force_cpu', 'cond'], varargs=None, keywords='ignored', defaults=(None, None))
paddle.fluid.layers.equal ArgSpec(args=['x', 'y', 'cond'], varargs=None, keywords='ignored', defaults=(None,))
paddle.fluid.layers.array_read ArgSpec(args=['array', 'i'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.shrink_memory ArgSpec(args=['x', 'i', 'table'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.array_length ArgSpec(args=['array'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.__init__ ArgSpec(args=['self', 'cond', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.IfElse.false_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.IfElse.parent_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
......@@ -240,9 +224,6 @@ paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs',
paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.update_memory ArgSpec(args=['self', 'ex_mem', 'new_mem'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ConditionalBlock.__init__ ArgSpec(args=['self', 'inputs', 'is_scalar_condition', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.ConditionalBlock.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.ConditionalBlock.complete ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.StaticRNN.complete_op ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.StaticRNN.memory ArgSpec(args=['self', 'init', 'shape', 'batch_ref', 'init_value', 'init_batch_dim_idx', 'ref_batch_dim_idx'], varargs=None, keywords=None, defaults=(None, None, None, 0.0, 0, 1))
......
......@@ -45,19 +45,13 @@ ExecutorPrepareContext::~ExecutorPrepareContext() {
Executor::Executor(const platform::Place& place) : place_(place) {}
void Executor::Close() {
#ifdef PADDLE_WITH_DISTRIBUTE
void Executor::BeginPass() {
::paddle::operators::distributed::RPCClient::GetInstance<
::paddle::operators::distributed::GRPCClient>()
->SendBeginPass();
}
void Executor::EndPass() {
::paddle::operators::distributed::RPCClient::GetInstance<
::paddle::operators::distributed::GRPCClient>()
->SendEndPass();
}
->SendComplete();
#endif
}
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
if (var_type == proto::VarType::LOD_TENSOR) {
......
......@@ -44,17 +44,11 @@ class Executor {
explicit Executor(const platform::Place& place);
#ifdef PADDLE_WITH_DISTRIBUTE
/*
* Sending signal to pserver to mark current pass started.
* Close this Executor.
* Calling this method will send complete messages to all pserver instances.
*/
void BeginPass();
/*
* Sending signal to pserver to mark current pass finished.
*/
void EndPass();
#endif
void Close();
/* @Brief
* Runtime evaluation of the given ProgramDesc under certain Scope
......
......@@ -137,6 +137,7 @@ bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
executor_->RunPreparedContext(
ctx_.get(), sub_scope_ != nullptr ? sub_scope_ : scope_.get(),
&feed_targets, &fetch_targets,
false, /* don't create local scope each time*/
false /* don't create variable eatch time */);
VLOG(4) << "Finish prepared context";
if (!GetFetch(fetchs, output_data)) {
......
......@@ -32,11 +32,11 @@ void Reorder2(nvinfer1::DimsHW shape, const T* idata, nvinfer1::DimsHW istrides,
for (int h = 0; h < shape.h(); ++h) {
for (int w = 0; w < shape.w(); ++w) {
odata[h * ostrides.h() + w * ostrides.w()] =
idata[h * ostrides.h() + w * ostrides.w()];
idata[h * istrides.h() + w * istrides.w()];
}
}
}
// indata c * k
// Reorder the data layout from CK to KC.
void ReorderCKtoKC(TensorRTEngine::Weight& iweights,
TensorRTEngine::Weight* oweights) {
......@@ -79,9 +79,8 @@ class FcOpConverter : public OpConverter {
framework::LoDTensor tmp;
tmp.Resize(Y_t->dims());
memcpy(tmp.mutable_data<float>(platform::CPUPlace()), Y_t->data<float>(),
Y_t->dims()[0] * Y_t->dims()[1]);
memcpy(tmp.mutable_data<float>(platform::CPUPlace()), weight_data,
Y_t->dims()[0] * Y_t->dims()[1] * sizeof(float));
TensorRTEngine::Weight weight{nvinfer1::DataType::kFLOAT,
static_cast<void*>(weight_data),
Y_t->memory_size() / sizeof(float)};
......@@ -93,7 +92,7 @@ class FcOpConverter : public OpConverter {
// The data layout of TRT FC layer's weight is different from fluid's FC,
// need to reorder the elements.
ReorderCKtoKC(tmp_weight, &weight);
ReorderCKtoKC(weight, &tmp_weight);
// Currently, the framework can only handle one fluid op -> one TRT layer,
// but fc fuses `mul` and `bias` (2 fluid ops), so here is a trick, just
......@@ -103,7 +102,7 @@ class FcOpConverter : public OpConverter {
auto* layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected,
*const_cast<nvinfer1::ITensor*>(X),
n_output, weight.get(), bias.get());
n_output, tmp_weight.get(), bias.get());
auto output_name = op_desc.Output("Out").front();
engine_->SetITensor(output_name, layer->getOutput(0));
......@@ -118,4 +117,3 @@ class FcOpConverter : public OpConverter {
} // namespace paddle
REGISTER_TRT_OP_CONVERTER(fc, FcOpConverter);
USE_OP(mul);
......@@ -37,7 +37,7 @@ TEST(ReluOpConverter, main) {
validator.SetOp(*desc.Proto());
LOG(INFO) << "execute";
validator.Execute(10);
validator.Execute(1);
}
} // namespace tensorrt
......
......@@ -23,11 +23,11 @@ namespace tensorrt {
TEST(fc_op, test) {
std::unordered_set<std::string> parameters({"mul-Y"});
framework::Scope scope;
TRTConvertValidation validator(20, parameters, scope, 1000);
validator.DeclInputVar("mul-X", nvinfer1::Dims4(8, 3, 1, 1));
validator.DeclParamVar("mul-Y", nvinfer1::Dims2(3, 2));
validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(8, 2));
TRTConvertValidation validator(10, parameters, scope, 1000);
validator.DeclInputVar("mul-X", nvinfer1::Dims4(1, 10, 1, 1));
validator.DeclParamVar("mul-Y", nvinfer1::Dims2(10, 2));
// validator.DeclParamVar("mul-Y", nvinfer1::Dims2(8, 2));
validator.DeclOutputVar("mul-Out", nvinfer1::Dims2(1, 2));
// Prepare Op description
framework::OpDesc desc;
......@@ -38,9 +38,10 @@ TEST(fc_op, test) {
validator.SetOp(*desc.Proto());
validator.Execute(10);
validator.Execute(1);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
USE_OP(mul);
......@@ -39,7 +39,7 @@ TEST(MulOpConverter, main) {
validator.SetOp(*desc.Proto());
LOG(INFO) << "execute";
validator.Execute(10);
validator.Execute(1);
}
} // namespace tensorrt
......
......@@ -39,7 +39,7 @@ namespace tensorrt {
float random(float low, float high) {
static std::random_device rd;
static std::mt19937 mt(rd());
std::uniform_real_distribution<double> dist(1.0, 10.0);
std::uniform_real_distribution<double> dist(low, high);
return dist(mt);
}
......@@ -49,6 +49,7 @@ void RandomizeTensor(framework::LoDTensor* tensor, const platform::Place& place,
size_t num_elements = analysis::AccuDims(dims, dims.size());
PADDLE_ENFORCE_GT(num_elements, 0);
auto* data = tensor->mutable_data<float>(place);
for (size_t i = 0; i < num_elements; i++) {
*(data + i) = random(0., 1.);
}
......@@ -68,7 +69,7 @@ class TRTConvertValidation {
int workspace_size = 1 << 10)
: parameters_(parameters), scope_(scope) {
// create engine.
engine_.reset(new TensorRTEngine(10, 1 << 10, &stream_));
engine_.reset(new TensorRTEngine(batch_size, workspace_size, &stream_));
engine_->InitNetwork();
PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
......@@ -138,12 +139,11 @@ class TRTConvertValidation {
cudaStreamSynchronize(*engine_->stream());
ASSERT_FALSE(op_desc_->OutputArgumentNames().empty());
const size_t output_space_size = 200;
const size_t output_space_size = 2000;
for (const auto& output : op_desc_->OutputArgumentNames()) {
std::vector<float> fluid_out;
std::vector<float> trt_out(output_space_size);
engine_->GetOutputInCPU(output, &trt_out[0],
output_space_size * sizeof(float));
engine_->GetOutputInCPU(output, &trt_out[0], output_space_size);
cudaStreamSynchronize(*engine_->stream());
auto* var = scope_.FindVar(output);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
......@@ -26,6 +26,8 @@ namespace paddle {
namespace inference {
namespace tensorrt {
int TensorRTEngine::runtime_batch_ = 1;
void TensorRTEngine::Build(const DescType &paddle_model) {
PADDLE_ENFORCE(false, "not implemented");
}
......@@ -42,6 +44,7 @@ void TensorRTEngine::Execute(int batch_size) {
PADDLE_ENFORCE_NOT_NULL(stream_);
infer_context_->enqueue(batch_size, buffers.data(), *stream_, nullptr);
cudaStreamSynchronize(*stream_);
SetRuntimeBatch(batch_size);
}
TensorRTEngine::~TensorRTEngine() {
......@@ -80,17 +83,17 @@ void TensorRTEngine::FreezeNetwork() {
auto dims = infer_engine_->getBindingDimensions(slot_offset);
item.second = kDataTypeSize[static_cast<int>(
infer_engine_->getBindingDataType(slot_offset))] *
analysis::AccuDims(dims.d, dims.nbDims);
analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
PADDLE_ENFORCE_GT(item.second, 0);
}
auto &buf = buffer(item.first);
buf.max_size = item.second * max_batch_;
CHECK(buf.buffer == nullptr); // buffer should be allocated only once.
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, buf.max_size));
PADDLE_ENFORCE_LE(buf.max_size, 1 << 30); // 10G
// buf.size will changed in the runtime.
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second * max_batch_));
buf.size = 0;
PADDLE_ENFORCE_LE(buf.max_size, 1 << 30); // 10G
buf.device = DeviceType::GPU;
}
}
......@@ -105,7 +108,7 @@ nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
PADDLE_ENFORCE(input, "infer network add input %s failed", name);
buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
analysis::AccuDims(dims.d, dims.nbDims);
analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
PADDLE_ENFORCE(input->isNetworkInput());
TensorRTEngine::SetITensor(name, input);
return input;
......@@ -149,35 +152,42 @@ void *TensorRTEngine::GetOutputInGPU(const std::string &name) {
void TensorRTEngine::GetOutputInGPU(const std::string &name, void *dst,
size_t max_size) {
// determine data size
auto *output = TensorRTEngine::GetITensor(name);
nvinfer1::Dims dims = output->getDimensions();
auto dim_size = analysis::AccuDims(dims.d, dims.nbDims);
size_t dst_size = dim_size * runtime_batch_ *
kDataTypeSize[static_cast<int>(output->getType())];
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_LE(dst_size, it->second);
PADDLE_ENFORCE_GE(max_size, dst_size);
auto &buf = buffer(name);
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
PADDLE_ENFORCE_EQ(cudaMemcpyAsync(dst, buf.buffer, it->second,
PADDLE_ENFORCE_EQ(cudaMemcpyAsync(dst, buf.buffer, dst_size,
cudaMemcpyDeviceToDevice, *stream_),
0);
}
void TensorRTEngine::GetOutputInCPU(const std::string &name, void *dst,
size_t max_size) {
VLOG(4) << "get output in cpu";
auto &buf = buffer(name);
// Update needed buffer size.
auto slot_offset = infer_engine_->getBindingIndex(name.c_str());
auto dims = infer_engine_->getBindingDimensions(slot_offset);
buf.size = kDataTypeSize[static_cast<int>(
infer_engine_->getBindingDataType(slot_offset))] *
analysis::AccuDims(dims.d, dims.nbDims);
PADDLE_ENFORCE_LE(buf.size, buf.max_size);
// determine data size
auto *output = TensorRTEngine::GetITensor(name);
nvinfer1::Dims dims = output->getDimensions();
auto dim_size = analysis::AccuDims(dims.d, dims.nbDims);
size_t dst_size = dim_size * runtime_batch_ *
kDataTypeSize[static_cast<int>(output->getType())];
auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_LE(dst_size, it->second);
PADDLE_ENFORCE_GE(max_size, dst_size);
auto &buf = buffer(name);
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
// DEBUG
memset(dst, 0, buf.size);
PADDLE_ENFORCE_EQ(
0, cudaMemcpy(dst, buf.buffer, buf.size, cudaMemcpyDeviceToHost));
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buf.buffer, dst_size,
cudaMemcpyDeviceToHost, *stream_));
}
Buffer &TensorRTEngine::buffer(const std::string &name) {
......@@ -225,6 +235,12 @@ nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
return itensor_map_[name];
}
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
runtime_batch_ = batch_size;
}
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -117,10 +117,14 @@ class TensorRTEngine : public EngineBase {
nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
void SetRuntimeBatch(size_t batch_size);
int GetRuntimeBatch();
private:
// the max batch size
int max_batch_;
// the runtime batch size
static int runtime_batch_;
// the max memory size the engine uses
int max_workspace_;
......
......@@ -28,7 +28,7 @@ class TensorRTEngineTest : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_EQ(0, cudaStreamCreate(&stream_));
engine_ = new TensorRTEngine(1, 1 << 10, &stream_);
engine_ = new TensorRTEngine(10, 1 << 10, &stream_);
engine_->InitNetwork();
}
......@@ -71,7 +71,7 @@ TEST_F(TensorRTEngineTest, add_layer) {
LOG(INFO) << "to get output";
float y_cpu;
engine_->GetOutputInCPU("y", &y_cpu, sizeof(float));
engine_->GetOutputInCPU("y", &y_cpu, 1 * sizeof(float));
LOG(INFO) << "to checkout output";
ASSERT_EQ(y_cpu, x_v * 2 + 3);
......@@ -103,15 +103,49 @@ TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
LOG(INFO) << "to get output";
float y_cpu[2] = {-1., -1.};
auto dims = engine_->GetITensor("y")->getDimensions();
ASSERT_EQ(dims.nbDims, 3);
ASSERT_EQ(dims.d[0], 2);
ASSERT_EQ(dims.d[1], 1);
engine_->GetOutputInCPU("y", &y_cpu[0], sizeof(float) * 2);
engine_->GetOutputInCPU("y", &y_cpu[0], 2 * sizeof(float));
ASSERT_EQ(y_cpu[0], 4.5);
ASSERT_EQ(y_cpu[1], 14.5);
}
TEST_F(TensorRTEngineTest, test_conv2d_temp) {
// Weight in CPU memory.
float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
float raw_bias[1] = {0};
TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
nvinfer1::Dims3{1, 3, 3});
auto* conv_layer =
TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
weight.get(), bias.get());
PADDLE_ENFORCE(conv_layer != nullptr);
conv_layer->setStride(nvinfer1::DimsHW{1, 1});
conv_layer->setPadding(nvinfer1::DimsHW{1, 1});
engine_->DeclareOutput(conv_layer, 0, "y");
engine_->FreezeNetwork();
ASSERT_EQ(engine_->engine()->getNbBindings(), 2);
float x_v[18] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
18 * sizeof(float));
engine_->Execute(2);
LOG(INFO) << "to get output";
float* y_cpu = new float[18];
engine_->GetOutputInCPU("y", &y_cpu[0], 18 * sizeof(float));
ASSERT_EQ(y_cpu[0], 4.0);
ASSERT_EQ(y_cpu[1], 6.0);
}
} // namespace tensorrt
} // namespace inference
} // namespace paddle
......@@ -210,13 +210,14 @@ void TestInference(const std::string& dirname,
// Ignore the profiling results of the first run
std::unique_ptr<paddle::framework::ExecutorPrepareContext> ctx;
bool CreateLocalScope = CreateVars;
if (PrepareContext) {
ctx = executor.Prepare(*inference_program, 0);
executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
&fetch_targets, true, CreateVars);
&fetch_targets, CreateLocalScope, CreateVars);
} else {
executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
true, CreateVars);
CreateLocalScope, CreateVars);
}
// Enable the profiler
......@@ -232,10 +233,11 @@ void TestInference(const std::string& dirname,
// Note: if you change the inference_program, you need to call
// executor.Prepare() again to get a new ExecutorPrepareContext.
executor.RunPreparedContext(ctx.get(), scope, &feed_targets,
&fetch_targets, CreateVars);
&fetch_targets, CreateLocalScope,
CreateVars);
} else {
executor.Run(*inference_program, scope, &feed_targets, &fetch_targets,
CreateVars);
CreateLocalScope, CreateVars);
}
}
......
......@@ -18,7 +18,7 @@ if(WITH_GRPC)
set_source_files_properties(grpc_serde_test.cc rpc_server_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(grpc_serde_test SRCS grpc_serde_test.cc
DEPS grpc++_unsecure grpc_unsecure gpr cares zlib protobuf sendrecvop_grpc scope profiler math_function SERIAL)
cc_test(grpc_server_test SRCS rpc_server_test.cc
cc_test(rpc_server_test SRCS rpc_server_test.cc
DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf executor proto_desc lookup_table_op SERIAL)
return()
endif()
......
......@@ -36,20 +36,16 @@ void GRPCClient::InitEventLoop() {
client_thread_.reset(new std::thread(std::bind(&GRPCClient::Proceed, this)));
}
void GRPCClient::SendBeginPass() {
for (auto& it : channels_) {
VLOG(3) << "send begin pass to: " << it.first;
this->AsyncSendBeginPass(it.first);
}
this->Wait();
}
void GRPCClient::SendEndPass() {
for (auto& it : channels_) {
VLOG(3) << "send end pass to " << it.first;
this->AsyncSendEndPass(it.first);
void GRPCClient::SendComplete() {
std::unique_lock<std::mutex> lk(completed_mutex_);
if (!completed_) {
for (auto& it : channels_) {
VLOG(3) << "send complete message to " << it.first;
this->AsyncSendComplete(it.first);
}
PADDLE_ENFORCE(this->Wait(), "internal grpc error");
completed_ = true;
}
this->Wait();
}
GRPCClient::~GRPCClient() {
......@@ -239,32 +235,19 @@ void GRPCClient::AsyncSendFetchBarrier(const std::string& ep,
req_count_++;
}
void GRPCClient::AsyncSendBeginPass(const std::string& ep, int64_t time_out) {
void GRPCClient::AsyncSendComplete(const std::string& ep, int64_t time_out) {
const auto ch = GetChannel(ep);
BatchBarrierProcessor* s = new BatchBarrierProcessor(ch);
s->Prepare(time_out);
sendrecv::VariableMessage req;
req.set_varname(BEGIN_PASS_MESSAGE);
req.set_varname(COMPLETE_MESSAGE);
auto rpc = s->stub_->AsyncSendVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
req_count_++;
}
void GRPCClient::AsyncSendEndPass(const std::string& ep, int64_t time_out) {
const auto ch = GetChannel(ep);
FetchBarrierProcessor* s = new FetchBarrierProcessor(ch);
s->Prepare(time_out);
sendrecv::VariableMessage req;
req.set_varname(END_PASS_MESSAGE);
auto rpc = s->stub_->AsyncGetVariable(s->context_.get(), req, &cq_);
rpc->Finish(&s->reply_, &s->status_, reinterpret_cast<void*>(s));
req_count_++;
}
void GRPCClient::AsyncCheckpointNotify(const std::string& ep,
const std::string& dir,
int64_t time_out) {
......
......@@ -174,7 +174,7 @@ class CheckpointNotifyProcessor : public BaseProcessor {
class GRPCClient : public RPCClient {
public:
GRPCClient() : ok_(true) {}
GRPCClient() : ok_(true), completed_(false) {}
virtual ~GRPCClient();
bool AsyncSendVar(const std::string& ep, const platform::DeviceContext& ctx,
......@@ -201,17 +201,12 @@ class GRPCClient : public RPCClient {
void AsyncCheckpointNotify(const std::string& ep, const std::string& dir,
int64_t time_out = FLAGS_rpc_deadline) override;
void AsyncSendBeginPass(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) override;
void AsyncSendEndPass(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) override;
void AsyncSendComplete(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) override;
bool Wait() override;
void SendBeginPass() override;
void SendEndPass() override;
void SendComplete() override;
protected:
void InitImpl() override;
......@@ -238,6 +233,10 @@ class GRPCClient : public RPCClient {
// mutex for GetChannel thread safety
std::mutex chan_mutex_;
DISABLE_COPY_AND_ASSIGN(GRPCClient);
// mutex for sending complete message only once
std::mutex completed_mutex_;
bool completed_;
};
} // namespace distributed
......
......@@ -43,8 +43,6 @@ constexpr char kRequestPassBarrier[] = "RequestPassBarrier";
#define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV"
#define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV"
#define COMPLETE_MESSAGE "COMPLETE@RECV"
#define BEGIN_PASS_MESSAGE "BEGIN_PASS@RECV"
#define END_PASS_MESSAGE "END_PASS@RECV"
#define CHECKPOINT_SAVE_MESSAGE "SAVE@CHECKPOINTNOTIFY"
#define CHECKPOINT_LOAD_MESSAGE "LOAD@CHECKPOINTNOTIFY"
......
......@@ -55,10 +55,9 @@ bool RequestSendHandler::Handle(const std::string& varname,
if (varname == BATCH_BARRIER_MESSAGE) {
VLOG(3) << "sync: recv BATCH_BARRIER_MESSAGE";
rpc_server_->IncreaseBatchBarrier(kRequestSend);
} else if (varname == BEGIN_PASS_MESSAGE) {
VLOG(3) << "sync: recv begin pass message";
rpc_server_->WaitCond(kRequestSend);
rpc_server_->BeginPass();
} else if (varname == COMPLETE_MESSAGE) {
VLOG(3) << "sync: recv complete message";
rpc_server_->Complete();
} else {
VLOG(3) << "sync: received var_name: " << varname;
rpc_server_->WaitCond(kRequestSend);
......@@ -94,14 +93,12 @@ bool RequestGetHandler::Handle(const std::string& varname,
if (varname == FETCH_BARRIER_MESSAGE) {
VLOG(3) << "sync: recv fetch barrier message";
rpc_server_->IncreaseBatchBarrier(kRequestGet);
} else if (varname == END_PASS_MESSAGE) {
rpc_server_->EndPass();
} else {
rpc_server_->WaitCond(kRequestGet);
*outvar = scope_->FindVar(varname);
}
} else {
if (varname != FETCH_BARRIER_MESSAGE && varname != END_PASS_MESSAGE) {
if (varname != FETCH_BARRIER_MESSAGE && varname != COMPLETE_MESSAGE) {
*outvar = scope_->FindVar(varname);
}
}
......
......@@ -60,17 +60,13 @@ class RPCClient {
const std::string& dir,
int64_t time_out = FLAGS_rpc_deadline) = 0;
virtual void AsyncSendBeginPass(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) = 0;
virtual void AsyncSendComplete(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) = 0;
virtual void AsyncSendEndPass(const std::string& ep,
int64_t time_out = FLAGS_rpc_deadline) = 0;
// BeginePass/EndPass tells all the pserver that start/end a pass, so that
// the pserver can increase/reduce it's barrier count, and continue to train
// Complete tells all the pserver instances that finishe the training,
// the pserver can reduce it's barrier count, and continue to train
// with other trainers.
virtual void SendBeginPass() = 0;
virtual void SendEndPass() = 0;
virtual void SendComplete() = 0;
virtual bool Wait() = 0;
......
......@@ -64,18 +64,7 @@ void RPCServer::IncreaseBatchBarrier(const std::string rpc_name) {
}
}
void RPCServer::BeginPass() {
VLOG(4) << "RPCServer begin increase pass barrier";
{
std::unique_lock<std::mutex> lock(mutex_);
client_num_++;
VLOG(4) << "increase client_num to: " << client_num_;
}
barrier_cond_.notify_all();
}
void RPCServer::EndPass() {
VLOG(4) << "RPCServer begin increase pass barrier";
void RPCServer::Complete() {
{
std::unique_lock<std::mutex> lock(mutex_);
client_num_--;
......@@ -87,6 +76,11 @@ void RPCServer::EndPass() {
barrier_cond_.notify_all();
}
int RPCServer::GetClientNum() {
std::unique_lock<std::mutex> lock(mutex_);
return client_num_;
}
void RPCServer::ResetBarrierCounter() {
VLOG(3) << "RPCServer ResetBarrierCounter ";
std::unique_lock<std::mutex> lock(mutex_);
......
......@@ -44,7 +44,7 @@ class RPCServer {
int GetSelectedPort() const { return selected_port_; }
int GetClientNum() const;
int GetClientNum();
void SavePort() const;
......@@ -64,8 +64,7 @@ class RPCServer {
void WaitCond(const std::string& rpc_name);
void IncreaseBatchBarrier(const std::string rpc_name);
void BeginPass();
void EndPass();
void Complete();
void ResetBarrierCounter();
......
......@@ -91,7 +91,7 @@ void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
}
}
void StartServer() {
void StartServer(const std::string& rpc_name) {
framework::ProgramDesc program;
framework::Scope scope;
platform::CPUPlace place;
......@@ -107,14 +107,14 @@ void StartServer() {
std::shared_ptr<framework::ExecutorPrepareContext>>
prefetch_var_name_to_prepared;
prefetch_var_name_to_prepared[in_var_name] = prepared[0];
g_req_handler->SetProgram(&program);
g_req_handler->SetPrefetchPreparedCtx(&prefetch_var_name_to_prepared);
g_req_handler->SetDevCtx(&ctx);
g_req_handler->SetScope(&scope);
g_req_handler->SetExecutor(&exe);
g_rpc_service->RegisterRPC(distributed::kRequestPrefetch,
g_req_handler.get());
g_rpc_service->RegisterRPC(rpc_name, g_req_handler.get());
g_req_handler->SetRPCServer(g_rpc_service.get());
std::thread server_thread(
......@@ -129,7 +129,7 @@ TEST(PREFETCH, CPU) {
distributed::RPCClient* client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>();
std::thread server_thread(StartServer);
std::thread server_thread(StartServer, distributed::kRequestPrefetch);
g_rpc_service->WaitServerReady();
int port = g_rpc_service->GetSelectedPort();
......@@ -162,3 +162,24 @@ TEST(PREFETCH, CPU) {
g_rpc_service.reset(nullptr);
g_req_handler.reset(nullptr);
}
TEST(COMPLETE, CPU) {
g_req_handler.reset(new distributed::RequestSendHandler(true));
g_rpc_service.reset(new RPCSERVER_T("127.0.0.1:0", 2));
distributed::RPCClient* client =
distributed::RPCClient::GetInstance<RPCCLIENT_T>();
PADDLE_ENFORCE(client != nullptr);
std::thread server_thread(StartServer, distributed::kRequestSend);
g_rpc_service->WaitServerReady();
int port = g_rpc_service->GetSelectedPort();
std::string ep = paddle::string::Sprintf("127.0.0.1:%d", port);
client->AsyncSendComplete(ep);
client->Wait();
EXPECT_EQ(g_rpc_service->GetClientNum(), 1);
g_rpc_service->ShutDown();
server_thread.join();
g_rpc_service.reset(nullptr);
g_req_handler.reset(nullptr);
}
......@@ -38,12 +38,10 @@ class LoDTensorBlockingQueue {
public:
bool Push(const std::vector<framework::LoDTensor>& lod_tensor_vec) {
CheckDims(lod_tensor_vec);
return queue_.Send(lod_tensor_vec);
}
bool Push(std::vector<framework::LoDTensor>&& lod_tensor_vec) {
CheckDims(lod_tensor_vec);
return queue_.Send(std::move(lod_tensor_vec));
}
......@@ -65,21 +63,6 @@ class LoDTensorBlockingQueue {
inline bool IsClosed() const { return queue_.IsClosed(); }
private:
void CheckDims(
const std::vector<framework::LoDTensor>& lod_tensor_vec) const {
PADDLE_ENFORCE(dims_.size() == lod_tensor_vec.size(),
"Expect input size is %d but found %s", dims_.size(),
lod_tensor_vec.size());
for (size_t i = 0; i < dims_.size(); ++i) {
const auto& in_dims = framework::slice_ddim(
lod_tensor_vec[i].dims(), 1, lod_tensor_vec[i].dims().size());
const auto& expect_dims =
framework::slice_ddim(dims_[i], 1, dims_[i].size());
PADDLE_ENFORCE(in_dims == expect_dims,
"Dims of the %d-th input tensor do not match", i);
}
}
BlockingQueue<std::vector<framework::LoDTensor>> queue_;
std::vector<framework::DDim> dims_;
};
......
......@@ -216,7 +216,7 @@ class ReshapeKernel {
if (shape_tensor) {
auto *shape_data = shape_tensor->data<int>();
framework::Tensor cpu_shape_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) {
if (platform::is_gpu_place(shape_tensor->place())) {
TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>();
}
......
......@@ -55,13 +55,14 @@ nvinfer1::Dims Vec2TRT_Dims(const std::vector<int64_t> &shape) {
"TensorRT' tensor input requires at least 2 dimensions");
PADDLE_ENFORCE_LE(shape.size(), 4UL,
"TensorRT' tensor input requires at most 4 dimensions");
switch (shape.size()) {
case 2:
return nvinfer1::Dims2(shape[0], shape[1]);
return nvinfer1::Dims2(1, shape[1]);
case 3:
return nvinfer1::Dims3(shape[0], shape[1], shape[2]);
return nvinfer1::Dims3(1, shape[1], shape[2]);
case 4:
return nvinfer1::Dims4(shape[0], shape[1], shape[2], shape[3]);
return nvinfer1::Dims4(1, shape[1], shape[2], shape[3]);
default:
return nvinfer1::Dims();
}
......
......@@ -93,13 +93,15 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto* fluid_v = context.scope().FindVar(y);
PADDLE_ENFORCE_NOT_NULL(fluid_v, "no output variable called %s", y);
auto* fluid_t = fluid_v->GetMutable<framework::LoDTensor>();
auto size = inference::analysis::AccuDims(dims.d, dims.nbDims);
fluid_t->Resize(framework::make_ddim(ddim));
// TODO(Superjomn) find some way to determine which device to output the
// tensor.
// if (platform::is_cpu_place(fluid_t->place())) {
// TODO(Superjomn) change this float to dtype size.
auto size = inference::analysis::AccuDims(dims.d, dims.nbDims) *
FLAGS_tensorrt_engine_batch_size;
engine->GetOutputInCPU(y,
fluid_t->mutable_data<float>(platform::CPUPlace()),
size * sizeof(float));
......
......@@ -64,36 +64,37 @@ TEST(TensorRTEngineOp, manual) {
LOG(INFO) << "create block desc";
framework::BlockDesc block_desc(&program, block_);
LOG(INFO) << "create mul op";
auto* mul = block_desc.AppendOp();
mul->SetType("mul");
mul->SetInput("X", std::vector<std::string>({"x"})); // 2 x 4
mul->SetInput("Y", std::vector<std::string>({"y"})); // 4 x 6
mul->SetOutput("Out", std::vector<std::string>({"z"})); // 2 x 6
LOG(INFO) << "create fc op";
auto* fc0 = block_desc.AppendOp();
fc0->SetType("fc");
fc0->SetInput("X", std::vector<std::string>({"x"})); // 4 x 1 x 1
fc0->SetInput("Y", std::vector<std::string>({"y"})); // 4 x 6
fc0->SetOutput("Out", std::vector<std::string>({"z"})); // 6 x 1 x 1
LOG(INFO) << "create fc op";
auto* fc = block_desc.AppendOp();
fc->SetType("mul");
fc->SetInput("X", std::vector<std::string>({"z"}));
fc->SetInput("Y", std::vector<std::string>({"y0"})); // 6 x 8
fc->SetOutput("Out", std::vector<std::string>({"z0"})); // 2 x 8
auto* fc1 = block_desc.AppendOp();
fc1->SetType("fc");
fc1->SetInput("X", std::vector<std::string>({"z"}));
fc1->SetInput("Y", std::vector<std::string>({"y0"})); // 6 x 8
fc1->SetOutput("Out", std::vector<std::string>({"z0"})); // 8 x 1 x 1
// Set inputs' variable shape in BlockDesc
AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4}));
// the batch size is 2, so the dims of 'x' is {2, 4, 1, 1}
AddTensorToBlockDesc(block_, "x", std::vector<int64_t>({2, 4, 1, 1}));
AddTensorToBlockDesc(block_, "y", std::vector<int64_t>({4, 6}));
AddTensorToBlockDesc(block_, "y0", std::vector<int64_t>({6, 8}));
AddTensorToBlockDesc(block_, "z", std::vector<int64_t>({2, 6}));
// It is wired, need to copy manually.
*block_->add_ops() = *mul->Proto();
*block_->add_ops() = *fc->Proto();
*block_->add_ops() = *fc0->Proto();
*block_->add_ops() = *fc1->Proto();
ASSERT_EQ(block_->ops_size(), 2);
LOG(INFO) << "create tensorrt desc";
framework::OpDesc engine_op_desc(nullptr);
engine_op_desc.SetType("tensorrt_engine");
engine_op_desc.SetInput("Xs", std::vector<std::string>({"x", "y", "y0"}));
engine_op_desc.SetInput("Xs", std::vector<std::string>({"x"}));
engine_op_desc.SetOutput("Ys", std::vector<std::string>({"z0"}));
SetAttr<std::string>(engine_op_desc.Proto(), "subgraph",
block_->SerializeAsString());
......@@ -207,5 +208,4 @@ TEST(TensorRTEngineOp, fc) { Execute(40, 28, 28); }
} // namespace operators
} // namespace paddle
USE_TRT_CONVERTER(mul)
USE_TRT_CONVERTER(fc)
......@@ -498,10 +498,7 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<framework::Executor>(m, "Executor")
.def(py::init<const platform::Place &>())
#ifdef PADDLE_WITH_DISTRIBUTE
.def("begin_pass", &Executor::BeginPass)
.def("end_pass", &Executor::EndPass)
#endif
.def("close", &Executor::Close)
.def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
int block_id, bool create_local_scope, bool create_vars) {
pybind11::gil_scoped_release release;
......
......@@ -247,6 +247,7 @@ class Executor(object):
p.set_place(place)
self.executor = core.Executor(p)
self.program_caches = dict()
self._closed = False
def as_lodtensor(self, data):
"""
......@@ -348,11 +349,23 @@ class Executor(object):
]
return outs
def begin_pass(self):
self.executor.begin_pass()
def close(self):
"""
Close this executor.
def end_pass(self):
self.executor.end_pass()
You can no long use this executor after calling this method.
For the distributed training, this method would free the resource on PServers related to
the current Trainer.
Example:
>>> cpu = core.CPUPlace()
>>> exe = Executor(cpu)
>>> ...
>>> exe.close()
"""
if not self._closed:
self.executor.close()
self._closed = True
def run(self,
program=None,
......@@ -405,6 +418,10 @@ class Executor(object):
>>> feed={'X': x},
>>> fetch_list=[loss.name])
"""
if self._closed:
raise RuntimeError("Attempted to use a closed Executor")
if feed is None:
feed = {}
if not isinstance(feed, dict):
......
......@@ -32,7 +32,6 @@ except Exception, e:
import unique_name
__all__ = [
'Variable',
'Program',
'Operator',
'Parameter',
......@@ -302,7 +301,7 @@ class Variable(object):
__repr__ = __str__
def set_desc(self, input):
def _set_desc(self, input):
"""
Set the variable description.
......@@ -347,7 +346,7 @@ class Variable(object):
def type(self):
return self.desc.type()
def set_error_clip(self, error_clip):
def _set_error_clip(self, error_clip):
"""
Set the error_clip.
......
......@@ -796,104 +796,6 @@ def get_parameter_value_by_name(name, executor, program=None):
return get_parameter_value(var, executor)
def get_test_program(filelist, program=None, startup_program=None):
"""
Transpile current train program to a program to read test dataset
if the program is using reader ops like "open_files_op".
"""
def _copy_reader_var_(block, var, new_name=None):
if new_name == None:
new_name = var.name
new_var = block.create_var(
name=str(new_name), type=core.VarDesc.VarType.READER)
new_var.desc.set_shapes(var.desc.shapes())
new_var.desc.set_dtypes(var.desc.dtypes())
new_var.persistable = True
return new_var
def _get_test_reader_name(train_reader_name):
return train_reader_name + "_test"
def _is_reader_op(op):
block = op.block
if "Out" in op.output_names:
reader_out = block.vars[op.output("Out")[0]]
if reader_out.type == core.VarDesc.VarType.READER:
return True
return False
if program == None:
program = default_main_program()
if startup_program == None:
startup_program = default_startup_program()
startup_block = startup_program.global_block()
# 1. find out the orignal reader var name
startup_reader_op_list = []
for op in startup_block.ops:
if _is_reader_op(op):
startup_reader_op_list.append(op)
if len(startup_reader_op_list) == 0:
return program
root_reader_op = startup_reader_op_list[0]
train_test_reader_map = {}
# 2. add operators to startup to read open and read test data files
for op in startup_reader_op_list:
assert (len(op.output("Out")) == 1)
train_reader_name = op.output("Out")[0]
train_reader = startup_block.vars[train_reader_name]
test_reader = _copy_reader_var_(
startup_block,
train_reader,
new_name=_get_test_reader_name(train_reader_name))
train_test_reader_map[train_reader.name] = test_reader
test_op_inputs = {}
for name in op.input_names:
train_arg_names = op.input(name)
test_arg_vars = []
for arg_name in train_arg_names:
arg_var = train_test_reader_map[
arg_name] if name == "UnderlyingReader" else startup_block.vars[
arg_name]
test_arg_vars.append(arg_var)
test_op_inputs[name] = test_arg_vars
test_op = startup_block.append_op(
type=op.type,
inputs=test_op_inputs,
outputs={'Out': [test_reader]},
attrs=op.attrs)
# root reader op's filelist attr for read test files
if op.type == root_reader_op.type:
test_op.set_attr("file_names", filelist)
if op.type == "create_multi_pass_reader":
test_op.set_attr("pass_num", 1)
# 3. rename reader vars in inference program to different name
# to avoid read from train data.
main_block = program.global_block()
for var in main_block.vars.values():
if var.type == core.VarDesc.VarType.READER:
main_block._rename_var(
str(var.name), str(_get_test_reader_name(var.name)))
for op in main_block.ops:
if op.type == root_reader_op.type:
test_op.set_attr("file_names", filelist)
if op.type == "create_multi_pass_reader":
test_op.set_attr("pass_num", 1)
startup_program._sync_with_cpp()
program._sync_with_cpp()
return program
def _load_slice_up_vars(executor, dirname, slice_vars_and_atts):
if slice_vars_and_atts == None or len(slice_vars_and_atts) == 0:
return
......
......@@ -23,25 +23,17 @@ from ops import logical_and, logical_not, logical_or
import numpy
__all__ = [
'split_lod_tensor',
'merge_lod_tensor',
'While',
'Switch',
'lod_rank_table',
'max_sequence_len',
'lod_tensor_to_array',
'array_to_lod_tensor',
'increment',
'array_write',
'create_array',
'less_than',
'equal',
'array_read',
'shrink_memory',
'array_length',
'IfElse',
'DynamicRNN',
'ConditionalBlock',
'StaticRNN',
'reorder_lod_tensor_by_rank',
'ParallelDo',
......@@ -1457,7 +1449,7 @@ class IfElse(object):
if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
raise ValueError("input must in true/false blocks")
if id(x) not in self.input_table:
parent_block = self.parent_block()
parent_block = self._parent_block()
out_true = parent_block.create_var(
name=unique_name.generate('ifelse_input' + self.helper.name),
dtype=x.dtype)
......@@ -1483,7 +1475,7 @@ class IfElse(object):
else:
return out_false
def parent_block(self):
def _parent_block(self):
current_block = self.helper.main_program.current_block()
return self.helper.main_program.block(current_block.parent_idx)
......@@ -1499,7 +1491,7 @@ class IfElse(object):
out_table = self.output_table[1 if self.status ==
self.IN_IF_ELSE_TRUE_BLOCKS else 0]
parent_block = self.parent_block()
parent_block = self._parent_block()
for each_out in outs:
if not isinstance(each_out, Variable):
raise TypeError("Each output should be a variable")
......
......@@ -62,10 +62,10 @@ def noam_decay(d_model, warmup_steps):
The decayed learning rate.
"""
global_step = _decay_step_counter(1)
with init_on_cpu():
a = global_step**-0.5
b = (warmup_steps**-1.5) * global_step
lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)
a = global_step**-0.5
b = (warmup_steps**-1.5) * global_step
lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)
return lr_value
......@@ -108,12 +108,10 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""
global_step = _decay_step_counter()
with init_on_cpu():
# update learning_rate
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * (decay_rate**div_res)
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * (decay_rate**div_res)
return decayed_lr
......@@ -138,11 +136,10 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""
global_step = _decay_step_counter()
with init_on_cpu():
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
return decayed_lr
......@@ -184,12 +181,11 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""
global_step = _decay_step_counter()
with init_on_cpu():
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
div_res = global_step / decay_steps
if staircase:
div_res = ops.floor(div_res)
decayed_lr = learning_rate / (1 + decay_rate * div_res)
decayed_lr = learning_rate / (1 + decay_rate * div_res)
return decayed_lr
......@@ -224,25 +220,22 @@ def polynomial_decay(learning_rate,
"""
global_step = _decay_step_counter()
with init_on_cpu():
if cycle:
div_res = ops.ceil(global_step / decay_steps)
zero_var = tensor.fill_constant(
shape=[1], dtype='float32', value=0.0)
one_var = tensor.fill_constant(
shape=[1], dtype='float32', value=1.0)
with control_flow.Switch() as switch:
with switch.case(global_step == zero_var):
tensor.assign(input=one_var, output=div_res)
decay_steps = decay_steps * div_res
else:
decay_steps_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(decay_steps))
global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)
if cycle:
div_res = ops.ceil(global_step / decay_steps)
zero_var = tensor.fill_constant(shape=[1], dtype='float32', value=0.0)
one_var = tensor.fill_constant(shape=[1], dtype='float32', value=1.0)
decayed_lr = (learning_rate - end_learning_rate) * \
((1 - global_step / decay_steps) ** power) + end_learning_rate
with control_flow.Switch() as switch:
with switch.case(global_step == zero_var):
tensor.assign(input=one_var, output=div_res)
decay_steps = decay_steps * div_res
else:
decay_steps_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(decay_steps))
global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)
decayed_lr = (learning_rate - end_learning_rate) * \
((1 - global_step / decay_steps) ** power) + end_learning_rate
return decayed_lr
......@@ -277,28 +270,28 @@ def piecewise_decay(boundaries, values):
global_step = _decay_step_counter()
with init_on_cpu():
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
lr = tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
with control_flow.Switch() as switch:
for i in range(len(boundaries)):
boundary_val = tensor.fill_constant(
shape=[1], dtype='float32', value=float(boundaries[i]))
value_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(values[i]))
with switch.case(global_step < boundary_val):
tensor.assign(value_var, lr)
last_value_var = tensor.fill_constant(
with control_flow.Switch() as switch:
for i in range(len(boundaries)):
boundary_val = tensor.fill_constant(
shape=[1],
dtype='float32',
value=float(values[len(values) - 1]))
with switch.default():
tensor.assign(last_value_var, lr)
value=float(boundaries[i]),
force_cpu=True)
value_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(values[i]))
with switch.case(global_step < boundary_val):
tensor.assign(value_var, lr)
last_value_var = tensor.fill_constant(
shape=[1], dtype='float32', value=float(values[len(values) - 1]))
with switch.default():
tensor.assign(last_value_var, lr)
return lr
......@@ -333,9 +326,9 @@ def append_LARS(params_grads, learning_rate, weight_decay):
grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
if type(param_lr) == float and param_lr == 1.0:
decayed_lr = learning_rate * param_norm \
/ _balanced_weight(param_norm, grad_norm)
/ _balanced_weight(param_norm, grad_norm)
else:
decayed_lr = learning_rate * param_lr * param_norm \
/ _balanced_weight(param_norm, grad_norm)
/ _balanced_weight(param_norm, grad_norm)
# set back param local learning rate
param.optimize_attr['learning_rate'] = decayed_lr
......@@ -35,7 +35,7 @@ if len(sys.argv) == 1:
word_dict = paddle.dataset.imdb.word_dict()
else:
word_dict = load_vocab(sys.argv[1])
word_dict["<unk>"] = len(word_dict)
word_dict["<unk>"] = len(word_dict)
print "Dict dim = ", len(word_dict)
# input text data
......@@ -50,7 +50,7 @@ feeder = fluid.DataFeeder(feed_list=[data, label], place=fluid.CPUPlace())
BATCH_SIZE = 128
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.imdb.train(word_dict), buf_size=10000),
paddle.dataset.imdb.train(word_dict), buf_size=25000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
......
......@@ -19,7 +19,7 @@ import sys
TRAIN_FILES = ['train.recordio']
TEST_FILES = ['test.recordio']
DICT_DIM = 89528
DICT_DIM = 5147
# embedding dim
emb_dim = 128
......@@ -27,58 +27,46 @@ emb_dim = 128
# hidden dim
hid_dim = 128
# hidden dim2
hid_dim2 = 96
# class num
class_dim = 2
# epoch num
epoch_num = 10
def network_cfg(is_train, pass_num=100):
with fluid.unique_name.guard():
train_file_obj = fluid.layers.open_files(
filenames=TRAIN_FILES,
pass_num=pass_num,
shapes=[[-1, 1], [-1, 1]],
lod_levels=[1, 0],
dtypes=['int64', 'int64'])
test_file_obj = fluid.layers.open_files(
filenames=TEST_FILES,
pass_num=1,
shapes=[[-1, 1], [-1, 1]],
lod_levels=[1, 0],
dtypes=['int64', 'int64'])
if is_train:
file_obj = fluid.layers.shuffle(train_file_obj, buffer_size=1000)
else:
file_obj = test_file_obj
def build_program(is_train):
file_obj_handle = fluid.layers.io.open_files(
filenames=TRAIN_FILES if is_train else TEST_FILES,
shapes=[[-1, 1], [-1, 1]],
lod_levels=[1, 0],
dtypes=['int64', 'int64'])
file_obj = fluid.layers.double_buffer(
file_obj,
name="train_double_buffer" if is_train else 'test_double_buffer')
file_obj = fluid.layers.io.double_buffer(file_obj_handle)
with fluid.unique_name.guard():
data, label = fluid.layers.read_file(file_obj)
emb = fluid.layers.embedding(input=data, size=[DICT_DIM, emb_dim])
# sequence conv with window size = 3
win_size = 3
conv_3 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=win_size,
filter_size=3,
act="tanh",
pool_type="max")
pool_type="sqrt")
# fc layer after conv
fc_1 = fluid.layers.fc(input=[conv_3], size=hid_dim2)
conv_4 = fluid.nets.sequence_conv_pool(
input=emb,
num_filters=hid_dim,
filter_size=4,
act="tanh",
pool_type="sqrt")
# probability of each class
prediction = fluid.layers.fc(input=[fc_1],
prediction = fluid.layers.fc(input=[conv_3, conv_4],
size=class_dim,
act="softmax")
# cross entropy loss
cost = fluid.layers.cross_entropy(input=prediction, label=label)
......@@ -88,58 +76,62 @@ def network_cfg(is_train, pass_num=100):
if is_train:
# SGD optimizer
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.01)
sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
return {
'loss': avg_cost,
'log': [avg_cost, acc],
'file': train_file_obj if is_train else test_file_obj
}
return {'loss': avg_cost, 'log': [avg_cost, acc], 'file': file_obj_handle}
def main():
train = fluid.Program()
startup = fluid.Program()
test = fluid.Program()
with fluid.program_guard(train, startup):
train_args = network_cfg(is_train=True)
test = fluid.Program()
train_args = build_program(is_train=True)
with fluid.program_guard(test, fluid.Program()):
test_args = network_cfg(is_train=False)
with fluid.program_guard(test, startup):
test_args = build_program(is_train=False)
use_cuda = fluid.core.is_compiled_with_cuda()
# startup
place = fluid.CUDAPlace(0)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place=place)
exe.run(startup)
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=train_args['loss'].name, main_program=train)
use_cuda=use_cuda,
loss_name=train_args['loss'].name,
main_program=train)
test_exe = fluid.ParallelExecutor(
use_cuda=use_cuda, main_program=test, share_vars_from=train_exe)
fetch_var_list = [var.name for var in train_args['log']]
for i in xrange(sys.maxint):
result = map(numpy.array,
train_exe.run(fetch_list=fetch_var_list
if i % 1000 == 0 else []))
if len(result) != 0:
print 'Train: ', result
if i % 1000 == 0:
test_exe = fluid.ParallelExecutor(
use_cuda=True, main_program=test, share_vars_from=train_exe)
loss = []
acc = []
try:
while True:
loss_np, acc_np = map(
numpy.array, test_exe.run(fetch_list=fetch_var_list))
loss.append(loss_np[0])
acc.append(acc_np[0])
except:
test_args['file'].reset()
print 'TEST: ', numpy.mean(loss), numpy.mean(acc)
for epoch_id in range(epoch_num):
# train
try:
batch_id = 0
while True:
loss, acc = map(numpy.array,
train_exe.run(fetch_list=fetch_var_list))
print 'Train epoch', epoch_id, 'batch', batch_id, 'loss:', loss, 'acc:', acc
batch_id += 1
except fluid.core.EOFException:
print 'End of epoch', epoch_id
train_args['file'].reset()
# test
loss = []
acc = []
try:
while True:
loss_np, acc_np = map(numpy.array,
test_exe.run(fetch_list=fetch_var_list))
loss.append(loss_np[0])
acc.append(acc_np[0])
except:
test_args['file'].reset()
print 'Test loss:', numpy.mean(loss), 'acc:', numpy.mean(acc)
if __name__ == '__main__':
......
......@@ -36,7 +36,7 @@ with fluid.program_guard(main_program=prog):
avg_cost = fluid.layers.mean(cost)
prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name).set_error_clip(
prog_clip.block(0).var(hidden1.name)._set_error_clip(
fluid.clip.ErrorClipByValue(
max=CLIP_MAX, min=CLIP_MIN))
......
......@@ -19,6 +19,10 @@ from paddle.fluid.executor import Executor
from paddle.fluid.optimizer import MomentumOptimizer
import paddle.fluid.core as core
import paddle.fluid as fluid
from paddle.fluid.layers.control_flow import split_lod_tensor
from paddle.fluid.layers.control_flow import merge_lod_tensor
from paddle.fluid.layers.control_flow import ConditionalBlock
import unittest
import numpy as np
......@@ -34,11 +38,10 @@ class TestMNISTIfElseOp(unittest.TestCase):
limit = layers.fill_constant(shape=[1], dtype='int64', value=5)
cond = layers.less_than(x=label, y=limit)
true_image, false_image = layers.split_lod_tensor(
input=image, mask=cond)
true_image, false_image = split_lod_tensor(input=image, mask=cond)
true_out = layers.create_tensor(dtype='float32')
true_cond = layers.ConditionalBlock([cond])
true_cond = ConditionalBlock([cond])
with true_cond.block():
hidden = layers.fc(input=true_image, size=100, act='tanh')
......@@ -46,14 +49,14 @@ class TestMNISTIfElseOp(unittest.TestCase):
layers.assign(input=prob, output=true_out)
false_out = layers.create_tensor(dtype='float32')
false_cond = layers.ConditionalBlock([cond])
false_cond = ConditionalBlock([cond])
with false_cond.block():
hidden = layers.fc(input=false_image, size=200, act='tanh')
prob = layers.fc(input=hidden, size=10, act='softmax')
layers.assign(input=prob, output=false_out)
prob = layers.merge_lod_tensor(
prob = merge_lod_tensor(
in_true=true_out, in_false=false_out, mask=cond, x=image)
loss = layers.cross_entropy(input=prob, label=label)
avg_loss = layers.mean(loss)
......
......@@ -251,7 +251,7 @@ class OpTest(unittest.TestCase):
for out_name, out_dup in Operator.get_op_outputs(self.op_type):
fetch_list.append(str(out_name))
# fetch_list = map(block.var, fetch_list)
if not isinstance(fetch_list[0], Variable):
if not isinstance(fetch_list[0], fluid.framework.Variable):
fetch_list = map(block.var, fetch_list)
outs = executor.run(program,
feed=feed_map,
......
......@@ -18,14 +18,15 @@ import paddle.fluid.core as core
from paddle.fluid.framework import default_startup_program, default_main_program
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
from paddle.fluid.layers.control_flow import ConditionalBlock
import numpy
class ConditionalBlock(unittest.TestCase):
class ConditionalBlockTest(unittest.TestCase):
def test_forward(self):
data = layers.data(name='X', shape=[1], dtype='float32')
data.stop_gradient = False
cond = layers.ConditionalBlock(inputs=[data])
cond = ConditionalBlock(inputs=[data])
out = layers.create_tensor(dtype='float32')
with cond.block():
hidden = layers.fc(input=data, size=10)
......
......@@ -16,7 +16,7 @@ import unittest
import paddle.fluid.framework as framework
class ConditionalBlock(unittest.TestCase):
class ConstantTest(unittest.TestCase):
def test_const_value(self):
self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD")
self.assertEqual(framework.TEMP_VAR_NAME, "@TEMP@")
......
......@@ -17,6 +17,12 @@ import paddle
import unittest
import numpy
from paddle.fluid.layers.control_flow import lod_rank_table
from paddle.fluid.layers.control_flow import max_sequence_len
from paddle.fluid.layers.control_flow import lod_tensor_to_array
from paddle.fluid.layers.control_flow import array_to_lod_tensor
from paddle.fluid.layers.control_flow import shrink_memory
class TestDynRNN(unittest.TestCase):
def setUp(self):
......@@ -38,12 +44,11 @@ class TestDynRNN(unittest.TestCase):
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
rank_table = fluid.layers.lod_rank_table(x=sent_emb)
rank_table = lod_rank_table(x=sent_emb)
sent_emb_array = fluid.layers.lod_tensor_to_array(
x=sent_emb, table=rank_table)
sent_emb_array = lod_tensor_to_array(x=sent_emb, table=rank_table)
seq_len = fluid.layers.max_sequence_len(rank_table=rank_table)
seq_len = max_sequence_len(rank_table=rank_table)
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
i.stop_gradient = False
......@@ -66,7 +71,7 @@ class TestDynRNN(unittest.TestCase):
mem = fluid.layers.array_read(array=mem_array, i=i)
ipt = fluid.layers.array_read(array=sent_emb_array, i=i)
mem = fluid.layers.shrink_memory(x=mem, i=i, table=rank_table)
mem = shrink_memory(x=mem, i=i, table=rank_table)
hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh')
......@@ -75,8 +80,7 @@ class TestDynRNN(unittest.TestCase):
fluid.layers.array_write(x=hidden, i=i, array=mem_array)
fluid.layers.less_than(x=i, y=seq_len, cond=cond)
all_timesteps = fluid.layers.array_to_lod_tensor(
x=out, table=rank_table)
all_timesteps = array_to_lod_tensor(x=out, table=rank_table)
last = fluid.layers.sequence_last_step(input=all_timesteps)
logits = fluid.layers.fc(input=last, size=1, act=None)
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
......
......@@ -91,20 +91,21 @@ class TestLearningRateDecay(unittest.TestCase):
def check_decay_with_place(self, place, python_decay_fn, fluid_decay_fn,
kwargs):
main_prog = fluid.Program()
startup_prog = fluid.Program()
decayed_lr = fluid_decay_fn(**kwargs)
with fluid.program_guard(main_prog, startup_prog):
decayed_lr = fluid_decay_fn(**kwargs)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
exe.run(startup_prog)
fluid.memory_optimize(fluid.default_main_program())
fluid.memory_optimize(main_prog)
for step in range(10):
lr_val, = exe.run(fluid.default_main_program(),
feed={},
fetch_list=[decayed_lr])
lr_val, = exe.run(main_prog, feed={}, fetch_list=[decayed_lr])
python_decayed_lr = python_decay_fn(
global_step=float(step), **kwargs)
self.assertAlmostEqual(
......
......@@ -12,7 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.layers import lod_rank_table, data
from paddle.fluid.layers import data
from paddle.fluid.layers.control_flow import lod_rank_table
from paddle.fluid.executor import Executor
import paddle.fluid.core as core
import numpy
......
......@@ -20,6 +20,11 @@ from paddle.fluid.framework import Program, program_guard
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
from paddle.fluid.layers.control_flow import lod_rank_table
from paddle.fluid.layers.control_flow import max_sequence_len
from paddle.fluid.layers.control_flow import lod_tensor_to_array
from paddle.fluid.layers.control_flow import array_to_lod_tensor
class TestCPULoDTensorArrayOps(unittest.TestCase):
def place(self):
......@@ -137,13 +142,13 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
with program_guard(program):
x = layers.data(name='x', shape=[10])
x.persistable = True
table = layers.lod_rank_table(x, level=level)
max_len = layers.max_sequence_len(table)
table = lod_rank_table(x, level=level)
max_len = max_sequence_len(table)
max_len.persistable = True
array = layers.lod_tensor_to_array(x, table)
array = lod_tensor_to_array(x, table)
array.persistable = True
result = layers.array_to_lod_tensor(array, table)
result = array_to_lod_tensor(array, table)
result.persistable = True
exe = Executor(place)
scope = core.Scope()
......@@ -181,9 +186,9 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
with program_guard(program):
x = layers.data(
name='x', shape=[1], dtype='float32', stop_gradient=False)
table = layers.lod_rank_table(x, level=0)
array = layers.lod_tensor_to_array(x, table)
result = layers.array_to_lod_tensor(array, table)
table = lod_rank_table(x, level=0)
array = lod_tensor_to_array(x, table)
result = array_to_lod_tensor(array, table)
mean = layers.mean(result)
......
......@@ -107,44 +107,24 @@ class TestMNIST(TestParallelExecutorBase):
label = np.ones(shape=[32, 1], dtype='int64')
return img, label
# simple_fc
def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
def _compare_reduce_and_allreduce(self, model, use_cuda, random_data=True):
if use_cuda and not core.is_compiled_with_cuda():
return
self.check_network_convergence(simple_fc_net, use_cuda=use_cuda)
self.check_network_convergence(
simple_fc_net, use_cuda=use_cuda, allow_op_delay=True)
img, label = self._init_data()
model, use_cuda=use_cuda, use_reduce=True)
self.check_network_convergence(
simple_fc_net,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_reduce=use_reduce)
model, use_cuda=use_cuda, allow_op_delay=True, use_reduce=True)
def check_simple_fc_convergence_with_Reduce(self, use_cuda):
if use_cuda and not core.is_compiled_with_cuda():
return
self.check_network_convergence(
simple_fc_net, use_cuda=use_cuda, use_reduce=True)
self.check_network_convergence(
simple_fc_net,
use_cuda=use_cuda,
allow_op_delay=True,
use_reduce=True)
img, label = self._init_data()
img, label = self._init_data(random_data)
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
simple_fc_net,
model,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_reduce=False)
reduce_first_loss, reduce_last_loss = self.check_network_convergence(
simple_fc_net,
model,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
......@@ -153,7 +133,24 @@ class TestMNIST(TestParallelExecutorBase):
for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
self.assertAlmostEquals(loss[0], loss[1], delta=1e-4)
# simple_fc
def check_simple_fc_convergence(self, use_cuda, use_reduce=False):
if use_cuda and not core.is_compiled_with_cuda():
return
self.check_network_convergence(simple_fc_net, use_cuda=use_cuda)
self.check_network_convergence(
simple_fc_net, use_cuda=use_cuda, allow_op_delay=True)
img, label = self._init_data()
self.check_network_convergence(
simple_fc_net,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_reduce=use_reduce)
def test_simple_fc(self):
# use_cuda
......@@ -162,8 +159,8 @@ class TestMNIST(TestParallelExecutorBase):
def test_simple_fc_with_new_strategy(self):
# use_cuda, use_reduce
self.check_simple_fc_convergence_with_Reduce(True)
self.check_simple_fc_convergence_with_Reduce(False)
self._compare_reduce_and_allreduce(simple_fc_net, True)
self._compare_reduce_and_allreduce(simple_fc_net, False)
def check_simple_fc_parallel_accuracy(self, use_cuda):
if use_cuda and not core.is_compiled_with_cuda():
......@@ -209,39 +206,13 @@ class TestMNIST(TestParallelExecutorBase):
"label": label},
use_cuda=use_cuda)
def check_batchnorm_fc_convergence_use_reduce(self, use_cuda):
if use_cuda and not core.is_compiled_with_cuda():
return
self.check_network_convergence(
fc_with_batchnorm, use_cuda=use_cuda, use_reduce=True)
img, label = self._init_data()
all_reduce_first_loss, all_reduce_last_loss = self.check_network_convergence(
fc_with_batchnorm,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_reduce=False)
reduce_first_loss, reduce_last_loss = self.check_network_convergence(
fc_with_batchnorm,
feed_dict={"image": img,
"label": label},
use_cuda=use_cuda,
use_reduce=True)
for loss in zip(all_reduce_first_loss, reduce_first_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-6)
for loss in zip(all_reduce_last_loss, reduce_last_loss):
self.assertAlmostEquals(loss[0], loss[1], delta=1e-4)
def test_batchnorm_fc(self):
self.check_batchnorm_fc_convergence(True)
self.check_batchnorm_fc_convergence(False)
def test_batchnorm_fc_with_new_strategy(self):
self.check_batchnorm_fc_convergence_use_reduce(True)
self.check_batchnorm_fc_convergence_use_reduce(False)
self._compare_reduce_and_allreduce(fc_with_batchnorm, True)
self._compare_reduce_and_allreduce(fc_with_batchnorm, False)
if __name__ == '__main__':
......
......@@ -120,7 +120,7 @@ class BaseParallelForTest(unittest.TestCase):
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
data = next(generator)
if isinstance(data, fluid.Variable):
if isinstance(data, fluid.framework.Variable):
data = [data]
with pd.do():
......
......@@ -15,6 +15,7 @@
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.layers.control_flow import lod_rank_table
import numpy
......@@ -34,7 +35,7 @@ class TestReorderLoDTensor(unittest.TestCase):
dat.stop_gradient = False
rank_dat = fluid.layers.data(
name=cls.data_desc[1][0], shape=cls.data_desc[1][1])
table = fluid.layers.lod_rank_table(rank_dat)
table = lod_rank_table(rank_dat)
new_dat = fluid.layers.reorder_lod_tensor_by_rank(
x=dat, rank_table=table)
loss = fluid.layers.reduce_sum(new_dat)
......
......@@ -21,6 +21,9 @@ from paddle.fluid.framework import default_main_program, switch_main_program
from paddle.fluid.framework import Program
import numpy as np
from paddle.fluid.layers.control_flow import shrink_memory
from paddle.fluid.layers.control_flow import lod_rank_table
class TestShrinkRNNMemoryBase(unittest.TestCase):
def setUp(self):
......@@ -30,15 +33,15 @@ class TestShrinkRNNMemoryBase(unittest.TestCase):
x.stop_gradient = False
rank_table_tensor = layers.data(
'rank_table_tensor', shape=[1], dtype='float32', lod_level=1)
table = layers.lod_rank_table(x=rank_table_tensor)
table = lod_rank_table(x=rank_table_tensor)
i = layers.zeros(dtype='int64', shape=[1])
self.mem1 = layers.shrink_memory(x=x, i=i, table=table)
self.mem1 = shrink_memory(x=x, i=i, table=table)
i = layers.increment(x=i)
i.stop_gradient = True
self.mem2 = layers.shrink_memory(x=self.mem1, i=i, table=table)
self.mem2 = shrink_memory(x=self.mem1, i=i, table=table)
i = layers.increment(x=i)
i.stop_gradient = True
self.mem3 = layers.shrink_memory(x=self.mem2, i=i, table=table)
self.mem3 = shrink_memory(x=self.mem2, i=i, table=table)
mem3_mean = layers.mean(self.mem3)
append_backward(loss=mem3_mean)
self.x_grad = self.main_program.global_block().var('x@GRAD')
......
......@@ -19,6 +19,8 @@ import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
from paddle.fluid.layers.control_flow import split_lod_tensor
from paddle.fluid.layers.control_flow import merge_lod_tensor
class TestCPULoDTensorArrayOps(unittest.TestCase):
......@@ -96,12 +98,11 @@ class TestCPULoDTensorArrayOps(unittest.TestCase):
y = layers.data(name='y', shape=[1])
y.persistable = True
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level)
out_true, out_false = split_lod_tensor(input=x, mask=y, level=level)
out_true.persistable = True
out_false.persistable = True
out = layers.merge_lod_tensor(
out = merge_lod_tensor(
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
out.persistable = True
......@@ -142,9 +143,8 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
level = 0
out_true, out_false = layers.split_lod_tensor(
input=x, mask=y, level=level)
out = layers.merge_lod_tensor(
out_true, out_false = split_lod_tensor(input=x, mask=y, level=level)
out = merge_lod_tensor(
in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
mean = layers.mean(out)
......
......@@ -38,7 +38,7 @@ from ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
from ..framework import Program, default_main_program, \
default_startup_program, Block, \
Variable, Parameter, grad_var_name
Parameter, grad_var_name
from details import *
LOOKUP_TABLE_TYPE = "lookup_table"
......@@ -918,7 +918,8 @@ class DistributeTranspiler(object):
# create table optimize block in pserver program
table_opt_op = [
op for op in self.optimize_ops
if op.input("Param")[0] == self.table_name
if 'Param' in op.input_names and op.input("Param")[0] ==
self.table_name
][0]
table_opt_block = pserver_program.create_block(pre_block_idx)
# only support sgd now
......@@ -1075,7 +1076,6 @@ class DistributeTranspiler(object):
]
def _clone_var(self, block, var, persistable=True):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
......
......@@ -14,7 +14,7 @@
from collections import defaultdict
from .. import core
from ..framework import Program, default_main_program, Parameter, Variable
from ..framework import Program, default_main_program, Parameter
from ..backward import _rename_arg_
dtype_to_size = {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册