Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
017bba16
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
017bba16
编写于
5月 15, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add op role
上级
dfdcb7ea
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
194 addition
and
68 deletion
+194
-68
paddle/fluid/framework/details/op_registry.h
paddle/fluid/framework/details/op_registry.h
+1
-4
paddle/fluid/framework/op_proto_maker.cc
paddle/fluid/framework/op_proto_maker.cc
+20
-0
paddle/fluid/framework/op_proto_maker.h
paddle/fluid/framework/op_proto_maker.h
+14
-6
paddle/fluid/pybind/const_value.cc
paddle/fluid/pybind/const_value.cc
+16
-0
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+41
-8
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+15
-12
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+55
-9
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+7
-5
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+25
-24
未找到文件。
paddle/fluid/framework/details/op_registry.h
浏览文件 @
017bba16
...
@@ -96,10 +96,7 @@ struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
...
@@ -96,10 +96,7 @@ struct OpInfoFiller<T, kOpProtoAndCheckerMaker> {
info
->
proto_
=
new
proto
::
OpProto
;
info
->
proto_
=
new
proto
::
OpProto
;
info
->
checker_
=
new
OpAttrChecker
();
info
->
checker_
=
new
OpAttrChecker
();
T
maker
;
T
maker
;
maker
.
SetProto
(
info
->
proto_
);
maker
(
info
->
proto_
,
info
->
checker_
);
maker
.
SetChecker
(
info
->
checker_
);
maker
.
Make
();
maker
.
Validate
();
info
->
proto_
->
set_type
(
op_type
);
info
->
proto_
->
set_type
(
op_type
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
info
->
proto_
->
IsInitialized
(),
info
->
proto_
->
IsInitialized
(),
...
...
paddle/fluid/framework/op_proto_maker.cc
浏览文件 @
017bba16
...
@@ -55,5 +55,25 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
...
@@ -55,5 +55,25 @@ void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() {
}
}
}
}
void
OpProtoAndCheckerMaker
::
operator
()(
proto
::
OpProto
*
proto
,
OpAttrChecker
*
attr_checker
)
{
proto_
=
proto
;
op_checker_
=
attr_checker
;
Make
();
AddAttr
<
int
>
(
OpRoleAttrName
(),
"The role of this operator"
)
.
InEnum
(
{
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kBackward
),
static_cast
<
int
>
(
OpRole
::
kOptimize
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kForward
),
static_cast
<
int
>
(
OpRole
::
kLoss
)
|
static_cast
<
int
>
(
OpRole
::
kBackward
)});
AddAttr
<
std
::
string
>
(
OpRoleVarAttrName
(),
"Optimized for variable"
)
.
SetDefault
(
""
);
Validate
();
}
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/framework/op_proto_maker.h
浏览文件 @
017bba16
...
@@ -20,21 +20,28 @@ limitations under the License. */
...
@@ -20,21 +20,28 @@ limitations under the License. */
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
enum
class
OpRole
{
kForward
=
0x0000
,
kBackward
=
0x0001
,
kOptimize
=
0x0002
,
kLoss
=
0x0100
,
};
// this class not only make proto but also init attribute checkers.
// this class not only make proto but also init attribute checkers.
class
OpProtoAndCheckerMaker
{
class
OpProtoAndCheckerMaker
{
public:
public:
static
const
char
*
OpRoleAttrName
()
{
return
"op_role"
;
}
static
const
char
*
OpRoleVarAttrName
()
{
return
"op_role_var"
;
}
void
operator
()(
proto
::
OpProto
*
proto
,
OpAttrChecker
*
attr_checker
);
virtual
void
Make
()
=
0
;
virtual
void
Make
()
=
0
;
virtual
~
OpProtoAndCheckerMaker
()
{
virtual
~
OpProtoAndCheckerMaker
()
{
CHECK
(
validated_
)
<<
"should call Validate after build"
;
CHECK
(
validated_
)
<<
"should call Validate after build"
;
}
}
void
SetProto
(
proto
::
OpProto
*
proto
)
{
proto_
=
proto
;
}
void
SetChecker
(
OpAttrChecker
*
attr_checker
)
{
op_checker_
=
attr_checker
;
}
void
Validate
();
protected:
protected:
struct
VariableBuilder
{
struct
VariableBuilder
{
proto
::
OpProto
::
Var
*
var_
;
proto
::
OpProto
::
Var
*
var_
;
...
@@ -76,6 +83,7 @@ class OpProtoAndCheckerMaker {
...
@@ -76,6 +83,7 @@ class OpProtoAndCheckerMaker {
private:
private:
void
CheckNoDuplicatedInOutAttrs
();
void
CheckNoDuplicatedInOutAttrs
();
void
Validate
();
proto
::
OpProto
*
proto_
;
proto
::
OpProto
*
proto_
;
OpAttrChecker
*
op_checker_
;
OpAttrChecker
*
op_checker_
;
...
...
paddle/fluid/pybind/const_value.cc
浏览文件 @
017bba16
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/const_value.h"
#include <paddle/fluid/framework/op_proto_maker.h>
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -23,6 +24,21 @@ void BindConstValue(pybind11::module* m) {
...
@@ -23,6 +24,21 @@ void BindConstValue(pybind11::module* m) {
m
->
def
(
"kTempVarName"
,
[]
{
return
framework
::
kTempVarName
;
});
m
->
def
(
"kTempVarName"
,
[]
{
return
framework
::
kTempVarName
;
});
m
->
def
(
"kGradVarSuffix"
,
[]
{
return
framework
::
kGradVarSuffix
;
});
m
->
def
(
"kGradVarSuffix"
,
[]
{
return
framework
::
kGradVarSuffix
;
});
m
->
def
(
"kZeroVarSuffix"
,
[]
{
return
framework
::
kZeroVarSuffix
;
});
m
->
def
(
"kZeroVarSuffix"
,
[]
{
return
framework
::
kZeroVarSuffix
;
});
auto
op_proto_and_checker_maker
=
m
->
def_submodule
(
"op_proto_and_checker_maker"
);
pybind11
::
enum_
<
framework
::
OpRole
>
(
op_proto_and_checker_maker
,
"OpRole"
)
.
value
(
"Forward"
,
framework
::
OpRole
::
kForward
)
.
value
(
"Backward"
,
framework
::
OpRole
::
kBackward
)
.
value
(
"Optimize"
,
framework
::
OpRole
::
kOptimize
)
.
value
(
"Loss"
,
framework
::
OpRole
::
kLoss
);
op_proto_and_checker_maker
.
def
(
"kOpRoleAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleAttrName
);
op_proto_and_checker_maker
.
def
(
"kOpRoleVarAttrName"
,
framework
::
OpProtoAndCheckerMaker
::
OpRoleVarAttrName
);
}
}
}
// namespace pybind
}
// namespace pybind
...
...
python/paddle/fluid/backward.py
浏览文件 @
017bba16
...
@@ -51,6 +51,12 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
...
@@ -51,6 +51,12 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
op_desc
.
set_input
(
para
,
args
)
op_desc
.
set_input
(
para
,
args
)
for
para
,
args
in
outputs
.
iteritems
():
for
para
,
args
in
outputs
.
iteritems
():
op_desc
.
set_output
(
para
,
args
)
op_desc
.
set_output
(
para
,
args
)
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
if
op_role_attr_name
not
in
attrs
:
attrs
[
op_role_attr_name
]
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
for
name
,
val
in
attrs
.
iteritems
():
for
name
,
val
in
attrs
.
iteritems
():
if
isinstance
(
val
,
framework
.
Block
):
if
isinstance
(
val
,
framework
.
Block
):
op_desc
.
set_block_attr
(
name
,
val
.
desc
)
op_desc
.
set_block_attr
(
name
,
val
.
desc
)
...
@@ -141,7 +147,7 @@ def _addup_repetitive_outputs_(op_descs):
...
@@ -141,7 +147,7 @@ def _addup_repetitive_outputs_(op_descs):
else
:
else
:
if
len
(
renamed_vars
[
var_name
])
==
1
:
if
len
(
renamed_vars
[
var_name
])
==
1
:
new_name
=
var_name
+
"@RENAME@"
+
\
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
var_rename_count
[
var_name
]
+=
1
# rename original var_name
# rename original var_name
renamed_vars
[
var_name
][
0
]
=
new_name
renamed_vars
[
var_name
][
0
]
=
new_name
...
@@ -149,7 +155,7 @@ def _addup_repetitive_outputs_(op_descs):
...
@@ -149,7 +155,7 @@ def _addup_repetitive_outputs_(op_descs):
_rename_arg_
(
pending_sum_ops
,
var_name
,
new_name
)
_rename_arg_
(
pending_sum_ops
,
var_name
,
new_name
)
new_name
=
var_name
+
"@RENAME@"
+
\
new_name
=
var_name
+
"@RENAME@"
+
\
str
(
var_rename_count
[
var_name
])
str
(
var_rename_count
[
var_name
])
var_rename_count
[
var_name
]
+=
1
var_rename_count
[
var_name
]
+=
1
op_desc
.
rename_output
(
var_name
,
new_name
)
op_desc
.
rename_output
(
var_name
,
new_name
)
renamed_vars
[
var_name
].
append
(
new_name
)
renamed_vars
[
var_name
].
append
(
new_name
)
...
@@ -335,9 +341,12 @@ def _append_backward_ops_(block,
...
@@ -335,9 +341,12 @@ def _append_backward_ops_(block,
no_grad_dict
[
block
.
idx
])
no_grad_dict
[
block
.
idx
])
# append op_desc in grad_op_descs to target_block
# append op_desc in grad_op_descs to target_block
op_role_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
backward
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
for
op_desc
in
grad_op_descs
:
for
op_desc
in
grad_op_descs
:
new_op_desc
=
target_block
.
desc
.
append_op
()
new_op_desc
=
target_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op_desc
)
new_op_desc
.
copy_from
(
op_desc
)
new_op_desc
.
set_attr
(
op_role_attr_name
,
backward
)
grad_to_var
[
"__current_op_desc__"
]
=
new_op_desc
grad_to_var
[
"__current_op_desc__"
]
=
new_op_desc
if
callbacks
is
not
None
:
if
callbacks
is
not
None
:
assert
(
isinstance
(
callbacks
,
list
))
assert
(
isinstance
(
callbacks
,
list
))
...
@@ -439,6 +448,11 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
...
@@ -439,6 +448,11 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
(list[(Variable,Variable)]): list of (parameter, gradient) pair.
"""
"""
assert
isinstance
(
loss
,
framework
.
Variable
)
assert
isinstance
(
loss
,
framework
.
Variable
)
loss
.
op
.
set_attr
(
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
(),
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
)
|
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Loss
))
if
callbacks
is
not
None
:
if
callbacks
is
not
None
:
isinstance
(
callbacks
,
list
)
isinstance
(
callbacks
,
list
)
...
@@ -456,12 +470,16 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
...
@@ -456,12 +470,16 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
current_block_idx
=
program
.
current_block_idx
current_block_idx
=
program
.
current_block_idx
grad_to_var
=
dict
()
grad_to_var
=
dict
()
op_desc
=
_create_op_desc_
(
"fill_constant"
,
{},
{
op_desc
=
_create_op_desc_
(
"Out"
:
[
_append_grad_suffix_
(
loss
.
name
)]
"fill_constant"
,
{},
{
"Out"
:
[
_append_grad_suffix_
(
loss
.
name
)]},
{
},
{
"shape"
:
[
1
],
"shape"
:
[
1
],
"value"
:
1.0
,
"value"
:
1.0
,
"dtype"
:
loss
.
dtype
,
"dtype"
:
loss
.
dtype
,
"force_cpu"
:
False
})
"force_cpu"
:
False
,
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
():
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Backward
)
|
int
(
core
.
op_proto_and_checker_maker
.
OpRole
.
Loss
),
})
root_block
.
desc
.
append_op
().
copy_from
(
op_desc
)
root_block
.
desc
.
append_op
().
copy_from
(
op_desc
)
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
block_no_grad_set
=
set
(
map
(
_strip_grad_suffix_
,
no_grad_dict
[
0
]))
...
@@ -503,6 +521,21 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
...
@@ -503,6 +521,21 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
params_and_grads
.
append
((
param_var
,
grad_var
))
params_and_grads
.
append
((
param_var
,
grad_var
))
else
:
else
:
params_and_grads
.
append
((
param_var
,
None
))
params_and_grads
.
append
((
param_var
,
None
))
op_role_var_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpRoleVarAttrName
()
for
p
,
g
in
params_and_grads
:
if
g
is
None
:
continue
for
op
in
reversed
(
program
.
global_block
().
ops
):
assert
isinstance
(
op
,
framework
.
Operator
)
if
g
.
name
in
op
.
output_arg_names
:
g
.
op
=
op
break
if
g
.
op
is
None
:
raise
ValueError
(
"Unexpected branch"
)
g
.
op
.
set_attr
(
op_role_var_attr_name
,
p
.
name
)
return
params_and_grads
return
params_and_grads
...
...
python/paddle/fluid/clip.py
浏览文件 @
017bba16
...
@@ -214,21 +214,24 @@ def set_gradient_clip(clip, param_list=None, program=None):
...
@@ -214,21 +214,24 @@ def set_gradient_clip(clip, param_list=None, program=None):
def
append_gradient_clip_ops
(
param_grad
):
def
append_gradient_clip_ops
(
param_grad
):
context
=
dict
()
context
=
dict
()
create_op_callbacks
=
[]
for
p
,
g
in
param_grad
:
for
p
,
g
in
param_grad
:
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
with
p
.
block
.
program
.
optimized_guard
(
p
):
if
clip_attr
is
None
:
clip_attr
=
getattr
(
p
,
'gradient_clip_attr'
,
NullGradientClipAttr
())
clip_attr
=
NullGradientClipAttr
()
if
clip_attr
is
None
:
if
not
isinstance
(
clip_attr
,
BaseGradientClipAttr
):
clip_attr
=
NullGradientClipAttr
()
raise
TypeError
(
if
not
isinstance
(
clip_attr
,
BaseGradientClipAttr
):
"clip attribute should be an instance of BaseGradientClipAttr"
)
raise
TypeError
(
"clip attribute should be an instance of BaseGradientClipAttr"
)
clip_attr
.
process_context
(
context
=
context
,
param
=
p
,
grad
=
g
)
clip_attr
.
process_context
(
context
=
context
,
param
=
p
,
grad
=
g
)
create_op_callbacks
.
append
(
functools
.
partial
(
res
=
[]
clip_attr
.
create_operators
,
param
=
p
,
grad
=
g
))
for
p
,
g
in
param_grad
:
with
p
.
block
.
program
.
optimized_guard
(
p
):
res
.
append
(
clip_attr
.
create_operators
(
param
=
p
,
grad
=
g
))
return
[
each_callback
()
for
each_callback
in
create_op_callbacks
]
return
res
ClipByValue
=
GradientClipByValue
ClipByValue
=
GradientClipByValue
...
...
python/paddle/fluid/framework.py
浏览文件 @
017bba16
...
@@ -402,6 +402,19 @@ class Operator(object):
...
@@ -402,6 +402,19 @@ class Operator(object):
self
.
block
=
block
self
.
block
=
block
self
.
desc
=
desc
self
.
desc
=
desc
self
.
attrs
=
attrs
self
.
attrs
=
attrs
if
self
.
attrs
is
None
:
self
.
attrs
=
dict
()
del
attrs
op_maker
=
core
.
op_proto_and_checker_maker
if
op_maker
.
kOpRoleAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
if
len
(
self
.
block
.
program
.
op_role_var
)
!=
0
and
op_maker
.
kOpRoleVarAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleVarAttrName
(
)]
=
self
.
block
.
program
.
op_role_var
if
len
(
self
.
desc
.
type
())
!=
0
:
if
len
(
self
.
desc
.
type
())
!=
0
:
return
return
if
type
is
None
:
if
type
is
None
:
...
@@ -467,21 +480,23 @@ class Operator(object):
...
@@ -467,21 +480,23 @@ class Operator(object):
arg
.
op
=
self
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
if
attrs
is
not
None
:
if
self
.
attrs
is
not
None
:
if
not
isinstance
(
attrs
,
dict
):
if
not
isinstance
(
self
.
attrs
,
dict
):
raise
TypeError
(
"'attrs' should be a dict."
)
raise
TypeError
(
"'attrs' should be a dict."
)
for
attr
in
proto
.
attrs
:
for
attr
in
proto
.
attrs
:
attr_name
=
attr
.
name
attr_name
=
attr
.
name
if
(
attr_name
not
in
attrs
)
or
(
attrs
[
attr_name
]
is
None
):
if
(
attr_name
not
in
self
.
attrs
)
or
(
self
.
attrs
[
attr_name
]
is
None
):
continue
continue
if
isinstance
(
attrs
[
attr_name
],
Block
):
if
isinstance
(
self
.
attrs
[
attr_name
],
Block
):
self
.
desc
.
set_block_attr
(
attr_name
,
attrs
[
attr_name
].
desc
)
self
.
desc
.
set_block_attr
(
attr_name
,
elif
isinstance
(
attrs
[
attr_name
],
core
.
BlockDesc
)
or
\
self
.
attrs
[
attr_name
].
desc
)
isinstance
(
attrs
[
attr_name
],
core
.
ProgramDesc
):
elif
isinstance
(
self
.
attrs
[
attr_name
],
core
.
BlockDesc
)
or
\
isinstance
(
self
.
attrs
[
attr_name
],
core
.
ProgramDesc
):
self
.
desc
.
set_serialized_attr
(
self
.
desc
.
set_serialized_attr
(
attr_name
,
attrs
[
attr_name
].
serialize_to_string
())
attr_name
,
self
.
attrs
[
attr_name
].
serialize_to_string
())
else
:
else
:
self
.
desc
.
set_attr
(
attr_name
,
attrs
[
attr_name
])
self
.
desc
.
set_attr
(
attr_name
,
self
.
attrs
[
attr_name
])
self
.
desc
.
check_attrs
()
self
.
desc
.
check_attrs
()
no_kernel_op_set
=
{
no_kernel_op_set
=
{
...
@@ -610,6 +625,10 @@ class Operator(object):
...
@@ -610,6 +625,10 @@ class Operator(object):
"""
"""
return
self
.
desc
.
attr_type
(
name
)
return
self
.
desc
.
attr_type
(
name
)
def
set_attr
(
self
,
name
,
val
):
self
.
attrs
[
name
]
=
val
self
.
desc
.
set_attr
(
name
,
val
)
@
property
@
property
def
attr_names
(
self
):
def
attr_names
(
self
):
"""
"""
...
@@ -1000,6 +1019,33 @@ class Program(object):
...
@@ -1000,6 +1019,33 @@ class Program(object):
self
.
blocks
=
[
Block
(
self
,
0
)]
self
.
blocks
=
[
Block
(
self
,
0
)]
self
.
current_block_idx
=
0
self
.
current_block_idx
=
0
self
.
_seed
=
0
self
.
_seed
=
0
self
.
_current_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
self
.
_op_role_var
=
""
@
property
def
op_role
(
self
):
return
self
.
_current_role
@
op_role
.
setter
def
set_op_role
(
self
,
role
):
self
.
_current_role
=
role
@
property
def
op_role_var
(
self
):
return
self
.
_op_role_var
@
op_role_var
.
setter
def
set_op_role_var
(
self
,
var_name
):
self
.
_op_role_var
=
var_name
@
contextlib
.
contextmanager
def
optimized_guard
(
self
,
var
):
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
self
.
_current_role
=
OpRole
.
Optimize
self
.
_op_role_var
=
var
.
name
if
isinstance
(
var
,
Variable
)
else
var
yield
self
.
_op_role_var
=
""
self
.
_current_role
=
OpRole
.
Forward
def
__str__
(
self
):
def
__str__
(
self
):
return
self
.
to_string
(
True
)
return
self
.
to_string
(
True
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
017bba16
...
@@ -213,11 +213,13 @@ class Optimizer(object):
...
@@ -213,11 +213,13 @@ class Optimizer(object):
optimize_ops
=
[]
optimize_ops
=
[]
for
param_and_grad
in
parameters_and_grads
:
for
param_and_grad
in
parameters_and_grads
:
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
with
param_and_grad
[
0
].
block
.
program
.
optimized_guard
(
1
]
is
not
None
:
param_and_grad
[
0
]):
optimize_op
=
self
.
_append_optimize_op
(
loss
.
block
,
if
param_and_grad
[
0
].
trainable
is
True
and
param_and_grad
[
param_and_grad
)
1
]
is
not
None
:
optimize_ops
.
append
(
optimize_op
)
optimize_op
=
self
.
_append_optimize_op
(
loss
.
block
,
param_and_grad
)
optimize_ops
.
append
(
optimize_op
)
# Get custom finish ops for subclasses
# Get custom finish ops for subclasses
# FIXME: Need to fix this once we figure out how to handle dependencies
# FIXME: Need to fix this once we figure out how to handle dependencies
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
017bba16
...
@@ -43,31 +43,32 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
...
@@ -43,31 +43,32 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
"""
"""
params_and_grads
=
[]
params_and_grads
=
[]
for
param
,
grad
in
parameters_and_grads
:
for
param
,
grad
in
parameters_and_grads
:
# If no gradient then we don't need to do anything
with
param
.
block
.
program
.
optimized_guard
(
param
):
if
grad
is
None
:
# If no gradient then we don't need to do anything
if
grad
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
regularization_term
=
regularization
(
param
,
grad
,
grad
.
block
)
# If no regularization specified, then we don't need to do anything
if
regularization_term
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
assert
grad
.
shape
==
regularization_term
.
shape
grad
.
block
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
"X"
:
grad
,
"Y"
:
regularization_term
},
outputs
=
{
"Out"
:
grad
})
params_and_grads
.
append
((
param
,
grad
))
params_and_grads
.
append
((
param
,
grad
))
continue
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
regularization_term
=
regularization
(
param
,
grad
,
grad
.
block
)
# If no regularization specified, then we don't need to do anything
if
regularization_term
is
None
:
params_and_grads
.
append
((
param
,
grad
))
continue
assert
grad
.
shape
==
regularization_term
.
shape
grad
.
block
.
append_op
(
type
=
'elementwise_add'
,
inputs
=
{
"X"
:
grad
,
"Y"
:
regularization_term
},
outputs
=
{
"Out"
:
grad
})
params_and_grads
.
append
((
param
,
grad
))
return
params_and_grads
return
params_and_grads
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录