Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
001b62a4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
001b62a4
编写于
8月 08, 2017
作者:
S
superjom
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
finish simple rnn in python
上级
d9f97b02
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
68 addition
and
13 deletion
+68
-13
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+68
-13
未找到文件。
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
001b62a4
...
...
@@ -2,9 +2,64 @@ import logging
import
paddle.v2.framework.core
as
core
import
unittest
import
numpy
as
np
import
paddle.v2.framework.create_op_creation_methods
as
creation
from
paddle.v2.framework.op
import
Operator
ops
=
creation
.
op_creations
def
py_sigmoid
(
x
):
return
1.
/
(
1
+
np
.
exp
(
-
x
))
class
PySimpleRNN
(
object
):
'''
A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm
'''
def
__init__
(
self
,
input_dim
=
30
,
batch_size
=
50
,
weight_dim
=
15
,
sent_len
=
11
):
self
.
x
=
np
.
random
.
normal
(
size
=
(
sent_len
,
batch_size
,
input_dim
))
self
.
W
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
U
=
np
.
random
.
normal
(
size
=
(
input_dim
,
input_dim
))
self
.
h_boot
=
np
.
random
.
normal
(
size
=
(
batch_size
,
input_dim
))
# memories
self
.
mems
=
[
np
.
zeros
(
shape
=
(
batch_size
,
input_dim
))
for
i
in
range
(
sent_len
)]
def
forward
(
self
):
xs
=
self
.
segment_inputs
()
for
step_id
in
range
(
self
.
x
.
shape
[
0
]):
self
.
step
(
step_id
,
xs
[
step_id
])
return
self
.
concat_outputs
()
def
segment_inputs
(
self
):
return
[
self
.
x
[
i
]
for
i
in
range
(
self
.
x
.
shape
[
0
])]
def
concat_outputs
(
self
):
return
np
.
array
(
self
.
mems
)
def
step
(
self
,
step_id
,
x
):
'''
run a step
'''
mem
=
self
.
mems
[
step_id
]
if
step_id
>
0
:
pre_mem
=
self
.
mems
[
step_id
-
1
]
else
:
pre_mem
=
self
.
h_boot
xW
=
np
.
matmul
(
x
,
self
.
W
)
hU
=
np
.
matmul
(
mem
,
self
.
U
)
sum
=
xW
+
hU
self
.
mems
[
step_id
]
=
py_sigmoid
(
sum
)
class
PySimpleRNNTest
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
rnn
=
PySimpleRNN
()
def
test_forward
(
self
):
output
=
self
.
rnn
.
forward
()
print
'output'
,
output
def
create_tensor
(
scope
,
name
,
shape
):
...
...
@@ -14,7 +69,7 @@ def create_tensor(scope, name, shape):
return
tensor
class
TestR
NN
(
unittest
.
TestCase
):
class
TestR
ecurrentOp
(
unittest
.
TestCase
):
'''
Test RNNOp
...
...
@@ -28,7 +83,7 @@ class TestRNN(unittest.TestCase):
memories:
- h
outputs:
- h
- h
'''
input_dim
=
30
...
...
@@ -36,7 +91,7 @@ class TestRNN(unittest.TestCase):
weight_dim
=
15
sent_len
=
11
def
init
(
self
):
def
forward
(
self
):
self
.
scope
=
core
.
Scope
()
...
...
@@ -46,7 +101,6 @@ class TestRNN(unittest.TestCase):
ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
print
'infer_shape'
rnn_op
.
infer_shape
(
self
.
scope
)
rnn_op
.
run
(
self
.
scope
,
ctx
)
def
create_global_variables
(
self
):
...
...
@@ -62,7 +116,7 @@ class TestRNN(unittest.TestCase):
def
create_rnn_op
(
self
):
# create RNNOp
rnnop
=
ops
.
recurrent_op
(
rnnop
=
Operator
(
"recurrent_op"
,
# inputs
inlinks
=
[
"x"
],
boot_memories
=
[
"h_boot"
],
...
...
@@ -81,17 +135,18 @@ class TestRNN(unittest.TestCase):
var
=
self
.
scope
.
new_var
(
"stepnet"
)
stepnet
=
var
.
get_net
()
x_fc_op
=
ops
.
fc
(
X
=
"x@alias"
,
W
=
"W"
,
Y
=
"Wx"
)
h_fc_op
=
ops
.
fc
(
X
=
"h@pre"
,
W
=
"U"
,
Y
=
"Uh"
)
sum_op
=
ops
.
add_two
(
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
ops
.
sigmoid
(
X
=
"sum"
,
Y
=
"h@alias"
)
x_fc_op
=
Operator
(
"fc"
,
X
=
"x@alias"
,
W
=
"W"
,
Y
=
"Wx"
)
h_fc_op
=
Operator
(
"fc"
,
X
=
"h@pre"
,
W
=
"U"
,
Y
=
"Uh"
)
sum_op
=
Operator
(
"add_two"
,
X
=
"Wx"
,
Y
=
"Uh"
,
Out
=
"sum"
)
sig_op
=
Operator
(
"sigmoid"
,
X
=
"sum"
,
Y
=
"h@alias"
)
for
op
in
[
x_fc_op
,
h_fc_op
,
sum_op
,
sig_op
]:
stepnet
.
add_op
(
op
)
stepnet
.
complete_add_op
(
True
)
def
test_recurrent
(
self
):
self
.
init
()
def
test_forward
(
self
):
print
'test recurrent op forward'
self
.
forward
()
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录