Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
000c1f7c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
000c1f7c
编写于
12月 01, 2017
作者:
T
Tao Luo
提交者:
GitHub
12月 01, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #5933 from tensor-tang/inference
enable inference benchmark
上级
ade6c832
79b17097
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
165 addition
and
29 deletion
+165
-29
benchmark/paddle/image/googlenet.py
benchmark/paddle/image/googlenet.py
+20
-6
benchmark/paddle/image/provider.py
benchmark/paddle/image/provider.py
+11
-5
benchmark/paddle/image/resnet.py
benchmark/paddle/image/resnet.py
+24
-9
benchmark/paddle/image/run_mkldnn_infer.sh
benchmark/paddle/image/run_mkldnn_infer.sh
+86
-0
benchmark/paddle/image/run_mkldnn_train.sh
benchmark/paddle/image/run_mkldnn_train.sh
+5
-4
benchmark/paddle/image/vgg.py
benchmark/paddle/image/vgg.py
+19
-5
未找到文件。
benchmark/paddle/image/googlenet.py
浏览文件 @
000c1f7c
...
...
@@ -6,10 +6,21 @@ width = 224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
128
)
use_gpu
=
get_config_arg
(
'use_gpu'
,
bool
,
True
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
if
not
is_infer
else
None
,
"test.list"
if
is_infer
else
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
...
...
@@ -146,7 +157,6 @@ def inception(name, input, channels, \
return
cat
lab
=
data_layer
(
name
=
"label"
,
size
=
1000
)
data
=
data_layer
(
name
=
"input"
,
size
=
3
*
height
*
width
)
# stage 1
...
...
@@ -224,6 +234,10 @@ pool5 = img_pool_layer(
dropout
=
dropout_layer
(
name
=
"dropout"
,
input
=
pool5
,
dropout_rate
=
0.4
)
out3
=
fc_layer
(
name
=
"output3"
,
input
=
dropout
,
size
=
1000
,
act
=
SoftmaxActivation
())
loss3
=
cross_entropy
(
name
=
'loss3'
,
input
=
out3
,
label
=
lab
)
outputs
(
loss3
)
if
is_infer
:
outputs
(
out3
)
else
:
lab
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss3
=
cross_entropy
(
name
=
'loss3'
,
input
=
out3
,
label
=
lab
)
outputs
(
loss3
)
benchmark/paddle/image/provider.py
浏览文件 @
000c1f7c
...
...
@@ -13,14 +13,20 @@ def initHook(settings, height, width, color, num_class, **kwargs):
settings
.
data_size
=
settings
.
height
*
settings
.
width
*
3
else
:
settings
.
data_size
=
settings
.
height
*
settings
.
width
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
),
integer_value
(
1
)]
settings
.
is_infer
=
kwargs
.
get
(
'is_infer'
,
False
)
if
settings
.
is_infer
:
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
)]
else
:
settings
.
slots
=
[
dense_vector
(
settings
.
data_size
),
integer_value
(
1
)]
@
provider
(
init_hook
=
initHook
,
min_pool_size
=-
1
,
cache
=
CacheType
.
CACHE_PASS_IN_MEM
)
def
process
(
settings
,
file_list
):
for
i
in
xrange
(
1024
):
for
i
in
xrange
(
2560
if
settings
.
is_infer
else
1024
):
img
=
np
.
random
.
rand
(
1
,
settings
.
data_size
).
reshape
(
-
1
,
1
).
flatten
()
lab
=
random
.
randint
(
0
,
settings
.
num_class
-
1
)
yield
img
.
astype
(
'float32'
),
int
(
lab
)
if
settings
.
is_infer
:
yield
img
.
astype
(
'float32'
)
else
:
lab
=
random
.
randint
(
0
,
settings
.
num_class
-
1
)
yield
img
.
astype
(
'float32'
),
int
(
lab
)
benchmark/paddle/image/resnet.py
浏览文件 @
000c1f7c
...
...
@@ -6,11 +6,21 @@ width = 224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
"layer_num"
,
int
,
50
)
is_test
=
get_config_arg
(
"is_test"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
if
not
is_infer
else
None
,
"test.list"
if
is_infer
else
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
...
...
@@ -45,7 +55,10 @@ def conv_bn_layer(name,
act
=
LinearActivation
(),
bias_attr
=
False
)
return
batch_norm_layer
(
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_test
)
name
=
name
+
"_bn"
,
input
=
tmp
,
act
=
active_type
,
use_global_stats
=
is_infer
)
def
bottleneck_block
(
name
,
input
,
num_filters1
,
num_filters2
):
...
...
@@ -207,7 +220,9 @@ elif layer_num == 152:
else
:
print
(
"Wrong layer number."
)
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
inputs
(
img
,
lbl
)
outputs
(
loss
)
if
is_infer
:
outputs
(
resnet
)
else
:
lbl
=
data_layer
(
name
=
"label"
,
size
=
num_class
)
loss
=
cross_entropy
(
name
=
'loss'
,
input
=
resnet
,
label
=
lbl
)
outputs
(
loss
)
benchmark/paddle/image/run_mkldnn_infer.sh
0 → 100755
浏览文件 @
000c1f7c
set
-e
function
clock_to_seconds
()
{
hours
=
`
echo
$1
|
awk
-F
':'
'{print $1}'
`
mins
=
`
echo
$1
|
awk
-F
':'
'{print $2}'
`
secs
=
`
echo
$1
|
awk
-F
':'
'{print $3}'
`
echo
`
bc
-l
<<<
"
$secs
+
$mins
* 60 +
$hours
* 3600"
`
}
function
infer
()
{
unset
OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY
topology
=
$1
layer_num
=
$2
bs
=
$3
use_mkldnn
=
$4
if
[
$4
==
"True"
]
;
then
thread
=
1
log
=
"logs/infer-
${
topology
}
-
${
layer_num
}
-mkldnn-
${
bs
}
.log"
elif
[
$4
==
"False"
]
;
then
thread
=
`
nproc
`
if
[
$thread
-gt
$bs
]
;
then
thread
=
$bs
fi
log
=
"logs/infer-
${
topology
}
-
${
layer_num
}
-
${
thread
}
mklml-
${
bs
}
.log"
else
echo
"Wrong input
$4
, use True or False."
exit
0
fi
models_in
=
"models/
${
topology
}
-
${
layer_num
}
/pass-00000/"
if
[
!
-d
$models_in
]
;
then
echo
"Training model
${
topology
}
_
${
layer_num
}
"
paddle train
--job
=
train
\
--config
=
"
${
topology
}
.py"
\
--use_mkldnn
=
True
\
--use_gpu
=
False
\
--trainer_count
=
1
\
--num_passes
=
1
\
--save_dir
=
"models/
${
topology
}
-
${
layer_num
}
"
\
--config_args
=
"batch_size=128,layer_num=
${
layer_num
}
"
\
>
/dev/null 2>&1
echo
"Done"
fi
log_period
=
$((
256
/
bs
))
paddle train
--job
=
test
\
--config
=
"
${
topology
}
.py"
\
--use_mkldnn
=
$use_mkldnn
\
--use_gpu
=
False
\
--trainer_count
=
$thread
\
--log_period
=
$log_period
\
--config_args
=
"batch_size=
${
bs
}
,layer_num=
${
layer_num
}
,is_infer=True"
\
--init_model_path
=
$models_in
\
2>&1 |
tee
${
log
}
# calculate the last 5 logs period time of 1280 samples,
# the time before are burning time.
start
=
`
tail
${
log
}
-n
7 |
head
-n
1 |
awk
-F
' '
'{print $2}'
| xargs
`
end
=
`
tail
${
log
}
-n
2 |
head
-n
1 |
awk
-F
' '
'{print $2}'
| xargs
`
start_sec
=
`
clock_to_seconds
$start
`
end_sec
=
`
clock_to_seconds
$end
`
fps
=
`
bc
<<<
"scale = 2; 1280 / (
$end_sec
-
$start_sec
)"
`
echo
"Last 1280 samples start:
${
start
}
(
${
start_sec
}
sec), end:
${
end
}
(
${
end_sec
}
sec;"
>>
${
log
}
echo
"FPS:
$fps
images/sec"
>>
${
log
}
}
if
[
!
-f
"train.list"
]
;
then
echo
" "
>
train.list
fi
if
[
!
-f
"test.list"
]
;
then
echo
" "
>
test.list
fi
if
[
!
-d
"logs"
]
;
then
mkdir
logs
fi
if
[
!
-d
"models"
]
;
then
mkdir
-p
models
fi
# inference benchmark
for
use_mkldnn
in
True False
;
do
for
batchsize
in
1 2 4 8 16
;
do
infer googlenet v1
$batchsize
$use_mkldnn
infer resnet 50
$batchsize
$use_mkldnn
infer vgg 19
$batchsize
$use_mkldnn
done
done
benchmark/paddle/image/run_mkldnn.sh
→
benchmark/paddle/image/run_mkldnn
_train
.sh
浏览文件 @
000c1f7c
...
...
@@ -8,13 +8,13 @@ function train() {
use_mkldnn
=
$4
if
[
$4
==
"True"
]
;
then
thread
=
1
log
=
"logs/
${
topology
}
-
${
layer_num
}
-mkldnn-
${
bs
}
.log"
log
=
"logs/
train-
${
topology
}
-
${
layer_num
}
-mkldnn-
${
bs
}
.log"
elif
[
$4
==
"False"
]
;
then
thread
=
`
nproc
`
# each trainer_count use only 1 core to avoid conflict
log
=
"logs/
${
topology
}
-
${
layer_num
}
-
${
thread
}
mklml-
${
bs
}
.log"
log
=
"logs/
train-
${
topology
}
-
${
layer_num
}
-
${
thread
}
mklml-
${
bs
}
.log"
else
echo
"Wrong input
$
3
, use True or False."
echo
"Wrong input
$
4
, use True or False."
exit
0
fi
args
=
"batch_size=
${
bs
}
,layer_num=
${
layer_num
}
"
...
...
@@ -30,13 +30,14 @@ function train() {
2>&1 |
tee
${
log
}
}
if
[
!
-
d
"train.list"
]
;
then
if
[
!
-
f
"train.list"
]
;
then
echo
" "
>
train.list
fi
if
[
!
-d
"logs"
]
;
then
mkdir
logs
fi
# training benchmark
for
use_mkldnn
in
True False
;
do
for
batchsize
in
64 128 256
;
do
train vgg 19
$batchsize
$use_mkldnn
...
...
benchmark/paddle/image/vgg.py
浏览文件 @
000c1f7c
...
...
@@ -6,10 +6,21 @@ width = 224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
64
)
layer_num
=
get_config_arg
(
'layer_num'
,
int
,
19
)
is_infer
=
get_config_arg
(
"is_infer"
,
bool
,
False
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
,
'is_infer'
:
is_infer
}
define_py_data_sources2
(
"train.list"
,
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
"train.list"
if
not
is_infer
else
None
,
"test.list"
if
is_infer
else
None
,
module
=
"provider"
,
obj
=
"process"
,
args
=
args
)
settings
(
batch_size
=
batch_size
,
...
...
@@ -98,6 +109,9 @@ elif layer_num == 19:
else
:
print
(
"Wrong layer number."
)
lab
=
data_layer
(
'label'
,
num_class
)
loss
=
cross_entropy
(
input
=
vgg
,
label
=
lab
)
outputs
(
loss
)
if
is_infer
:
outputs
(
vgg
)
else
:
lab
=
data_layer
(
'label'
,
num_class
)
loss
=
cross_entropy
(
input
=
vgg
,
label
=
lab
)
outputs
(
loss
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录