ParameterServer2.h 24.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <atomic>
Y
Yu Yang 已提交
18
#include <limits>
Z
zhangjinchao01 已提交
19 20 21
#include <mutex>
#include <string>
#include <type_traits>
Y
Yu Yang 已提交
22 23
#include <unordered_map>
#include <vector>
Z
zhangjinchao01 已提交
24 25 26 27 28

#include <stddef.h>
#include <stdlib.h>

#include "paddle/math/Matrix.h"
Y
Yu Yang 已提交
29
#include "paddle/math/Vector.h"
Z
zhangjinchao01 已提交
30 31
#include "paddle/parameter/Parameter.h"
#include "paddle/parameter/ParameterOptimizer.h"
L
liaogang 已提交
32
#include "paddle/utils/Common.h"
Y
Yu Yang 已提交
33 34
#include "paddle/utils/Locks.h"
#include "paddle/utils/Stat.h"
Z
zhangjinchao01 已提交
35 36 37 38 39 40
#include "paddle/utils/ThreadLocal.h"

#include "ParameterService.pb.h"

#include "ProtoServer.h"

41
DECLARE_int32(port);
Z
zhangjinchao01 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

namespace paddle {

// @TODO(yanfei):
// if armed with high density computation resource per node, pserver could also
// utilize GPU to reduce overhead. if this mechanism is used, it could pipeline
// network receiving and GPU computation to reduce the network overhead even
// further. the pipeline could help to accelerate BIG model training.
// @TODO:(yanfei)
// for cpu and less/low gpu machine, the time exhausted by forward and backward
// could be larger than optimization at pserver. However, if armed with lots of
// gpus per node and if the model size is so large enough that limited cpu
// computation causes big optmization latency, the GPU may be required by
// pserver.

/**
 * Client interface for the parameter server
 *
 * it implements several rpc API for remote parameter client usage.
 * for sync-sgd, client needs one controller thread to build connections
 * to all pservers, these controller connections do barriers
 * synchronization with these connections used for transfering data.
 * each data connection uses block based fine grained synchronization
 * to gain better scalability. Merging gradients from different trainers
 * are concurrently executed with block units, so that some network
 * overhead will be hidden in merging gradient.
 * for async-sgd, the difference is that pserver will do optimization
 * immediately if the gradients are ready, so that pserver needs to
 * prepare separate buffer to store value for sending back to trainer
 * to prevent from being polluted.
 */
class ParameterServer2 : public ProtoServer {
protected:
  /// parameter_ mutex.
  RWLock parameterMutex_;

  typedef std::pair<size_t, int64_t> BlockKey;
  struct BlockKeyHash {
    size_t operator()(const BlockKey& key) const {
      return std::hash<size_t>()(key.first) + key.second;
    }
  };

  // TODO(yanfei):
  // if index data structure is based on parameters instead of blocks, the
  // lookup performance could be better. In addition, the block memory
  // access almost exhibits good locality, so index data structure and
  // block data structure can be refined further, especially if gpu is used
  // for pserver.
  /**
   * all parameters are stored in CpuVector with a blockMap_ data structure
   * to index block data required by requests.
   */
  typedef std::unordered_map<BlockKey, int64_t, BlockKeyHash> BlockMap;
  /// <(para, block), global offset(byte) in all parameters>
  BlockMap blockOffsetMap_;
  /// <(para, block), global idx [0, nBlocksInAllParameters]>
  BlockMap blockIdMap_;

  std::vector<CpuVectorPtr> vectors_;
  std::vector<CpuMatrixPtr> matrices_;
  std::vector<CpuMemHandlePtr> dataMems_;

  // TODO(yanfei):
  // if storing sparse_remote_update() flag in request instead of
  // reading configMap_, and storing config within new block wise
  // overview data structure, the config mapping, block mapping
  // can be unified in single clean data structure. Use para_id
  // to index parameters, use offset to index block within parameter
  // and keep two index into single one.
  /**
   * mapping between parameter and config
   * different parameter allows different config, such as decay_rate.
   * for each request, it need to read config for adding gradient
   * and optmization.
   */
  std::unordered_map<size_t, ParameterConfig> configMap_;

  /**
   * to parallelize the multi-thread and multi-connnection
   * computation at pserver, it use block unit to reduce
   * the contention for computation, even further use block
   * level optimizater control for each block for some special
   * reason annotated below.
   */
  struct BlockInfo {
    const ParameterConfig* config;
    std::unique_ptr<std::mutex> lock;
    /// global offset for all parameters
    uint64_t offset;
    /**
     *
     * Async sgd in pserver is very different from sync sgd.
     * Each trainer follows startBatch, update*, finishBatch as in
     * sync sgd, but all these actions are almost executed by
     * multi-core and multi-thread simutaneously, so that async
     * sgd optimization is based on block level in reality, then
     * per block optimization is necessary indeed. In addition,
     * per block optimization is also perfered for performance
     * with multithreads.
     */
    std::unique_ptr<ParameterOptimizer> optimizer;
  };
  std::vector<BlockInfo> blockInfos_;

  typedef std::vector<std::pair<int64_t, int64_t>> BlockSegments;
  /// Because some blocks might not be fully used. We keep a
  /// record of which segments are used.
  BlockSegments usedSegments_;

  /// record pserver status, all status defined in ParameterService.pb
  PServerStatus status_;
  /// record all samples processed which could be used by optimizater
  std::atomic<int64_t> numSamplesProcessed_;
  double cost_;
  int mpiSize_;
  int dataSize_;
  /// configuration for current parameter optimizer
  OptimizationConfig config_;

  /**
   * The ReadWriteBuffer is based on std::vector, but aligned for avx/sse
   * compute. And add some helper method to allocate memory aligned blocks.
   *
   * @param T          type of element.
   * @param AlignBytes the memory aligned bytes for allocated blocks.
   */
  template <typename T, size_t AlignBytes>
  class ReadWriteBuffer
      : public std::vector<T, AlignedAllocator<T, AlignBytes>> {
  public:
    static_assert(sizeof(T) % AlignBytes == 0 || AlignBytes % sizeof(T) == 0,
                  "Type T must be able to aligned.");

    /**
     * @brief IsTLargerThanAlign compiled time calculated constant for is type
     * T larger than alignments.
     */
    constexpr static bool IsTLargerThanAlign = sizeof(T) >= AlignBytes;

    static_assert(std::is_pod<T>::value, "T must be POD type.");

    /**
     * @brief if AlignBytes > sizeof(T), then will calcuate how many elements
     * can be stored in AlignBytes.
     */
    constexpr static size_t AlignElementCount = AlignBytes / sizeof(T);

190 191 192 193
    static_assert(AlignElementCount ==
                          (AlignElementCount & -AlignElementCount) ||
                      AlignBytes > sizeof(T),
                  "AlignElementCount should be exp of 2");
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206

    /**
     * @brief Resize Buffer, with block count that will be allocated. Each block
     * will be memory aligned in AlignBytes.
     * @param size The element count in all blocks.
     * @param alignBlockCount The block count that will be allocated.
     */
    void resizeWithAlignHints(size_t size, size_t alignBlockCount = 1) {
      if (IsTLargerThanAlign) {  //! So, each elements is memory aligned.
        this->resize(size);
      } else {
        //! at most, we need such elements in buffer to make sure each block is
        //! aligned.
207
        this->resize(size + alignBlockCount * (AlignElementCount - 1));
Z
zhangjinchao01 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
      }
    }

    /**
     * @brief reset aligned allocate blocks.
     */
    void resetAlignAlloc() { this->curOffset_ = 0; }

    /**
     * @brief get next aligned block address.
     * @param blockSize is the element count in each block.
     * @return Aligned block address.
     */
    T* nextBlock(size_t blockSize) {
      T* r = &this->operator[](curOffset_);
      curOffset_ += blockSize;

      if (!IsTLargerThanAlign) {
226 227
        curOffset_ =
            (curOffset_ + AlignElementCount - 1) & ~(AlignElementCount - 1);
Z
zhangjinchao01 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
      }
      return r;
    }

  private:
    size_t curOffset_;
  };

  /// to buffer the data from network for further processing to
  /// reduce redundant memory allocation.
  ThreadLocal<ReadWriteBuffer<real, ALIGN_HINT>> readWriteBuffer_;

  /// size of the parameter
  int64_t size_;

  /// for synchronized training, check details in addGradient()
  /// and doOperation()
  ThreadBarrier gradientReadyBarrier_;
  ThreadBarrier parameterReadyBarrier_;
  ThreadBarrier passBarrier_;
  ThreadLocal<std::vector<SendParameterRequest>> requestVec_;
  ThreadLocal<std::vector<ProtoResponseCallbackEx>> callbackVec_;

  std::atomic<int> numPassFinishClients_;
  bool allClientPassFinish_;

  std::vector<std::unique_ptr<ThreadBarrier>> synchronizeBarriers_;
  std::atomic<int> serverId_;

  /**
   *
   * for lagged async gradient gradient commit control in Async Sgd.
   * discard lagged gradients from too slow nodes, whose gradients
   * exhibits bad quality.
   * Algorithm:
   * pserver:
   * 1. initial asyncUpdaterSteps = 0, asyncTrainerSteps_[N] = 0.
   * syncUpdaterSteps means
   *    the version of parameter value.
   * 2. when pull arrives, record asyncUpdateSteps_ into
   * syncTrainerSteps_[trainer_id]
   * 3. when push arrives, compare asyncUpdateSteps_ with
   * syncTrainerSteps_[trainer_id]
   *    if delta > threshold, discard current gradient, else commit
   *    gradient.
   * 4. reset asyncUpdaterSteps_ and asyncTrainerSteps_[N] when pass
   * finished
   * Note:
   * it can not discard all lag-gradient strictly in some special
   * condition. part of gradients could be discarded if
   * ConcurrentRemoteParameterUpdater is sed.
   * this algorithm is implemented in asynSGD()
   */
  int64_t asyncLaggedThreshold_;
  std::atomic<int64_t> asyncUpdateSteps_;
  std::vector<int64_t> asyncTrainerSteps_;
  size_t asyncLaggedGradientsNum_;
  /// stat all async update
  std::vector<size_t> asyncUpdateStat_;
  /// stat per trainer_id
  std::vector<size_t> asyncTrainerDiscardStat_;
  /// stat per trainer_id
  std::vector<size_t> asyncTrainerCommitStat_;

  /// only used by controller and other control cmd from trainer number 0
  std::unique_ptr<SyncThreadPool> syncThreadPool_;

  /// pserver for sparse remote update parameters
  bool isSparseServer_;

  /// barrier performance tuning sync-sgd required
  std::atomic<int64_t> batchId_;

public:
  struct Buffer {
    real* base;
    size_t size;
  };

protected:
  /// async gradient commit control
  bool asyncGrdientCommitCheckAndStat(const SendParameterRequest& request);

public:
  /// disable default parameter for overloading
  /// @rdmaCpu:the id of cpu core hosting RDMA server(0-N)
  /// -1 means using TCP transport instead of RDMA
  ParameterServer2(const std::string& addr, int port, int rdmaCpu = -1);

  ~ParameterServer2() {}

  static const std::string kRetMsgInvalidMatrixHandle;
  static const std::string kRetMsgInvalidVectorHandle;
  static const std::string kRetMsgUnknownOperation;

  /// service functions
  template <typename Dtype>
  void reduceAndSendData(const SendDataRequest& request,
                         std::unique_ptr<MsgReader>& msgReader,
                         ProtoResponseCallbackEx& callback);

  void templateReduceSum(const SendDataRequest& request,
                         std::unique_ptr<MsgReader>& msgReader,
                         ProtoResponseCallbackEx& callback);

  /**
   * @brief framework for sending parameters
   *
   * @note  different parameter data type can be sent to pserver.
   *        in most case, the api is used to send gradients from
   *        trainer to pserver.
   *        it also can be used to retrieve parameters from pserver
   */
  void sendParameter(const SendParameterRequest& request,
                     std::unique_ptr<MsgReader> msgReader,
                     ProtoResponseCallbackEx callback);

  void sendData(const SendDataRequest& request,
                std::unique_ptr<MsgReader> msgReader,
                ProtoResponseCallbackEx callback);

  /**
   * @brief send config to pserver
   *
352 353
   * @note  it can help pserver to understand the configuration for
   * optimization,
Z
zhangjinchao01 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
   *        logging control, duplicated initialization, etc.
   */
  void setConfig(const SetConfigRequest& request,
                 ProtoResponseCallback callback);

  /**
   * @brief get status for pserver
   *
   * @note  used to check if parameters are ready at pserver
   */
  void getStatus(const GetStatusRequest& request,
                 ProtoResponseCallback callback);

  /**
   * @brief set status for pserver
   *
   * @note  used to check if parameters are ready at pserver, since parameters
   *        at pserver are initialized by trainer
   */
  void setStatus(const SetStatusRequest& request,
                 ProtoResponseCallback callback);

  /**
   * @brief framework for doing some operation at pserver end
   *
   * @note  if sync-sgd is used, controller will calling op_SGD action
   *        for gradient optimization.
   *        check avaiable operations in opFuncs[]
   */
  void doOperation(const DoOperationRequest& request,
                   ProtoResponseCallback callback);

  /// Create a column vector. The size is the dimension of parameter
  void createVector(const CreateVectorRequest& request,
                    ProtoResponseCallback callback);

  void releaseVector(const ReleaseVectorRequest& request,
                     ProtoResponseCallback callback);

  /// Create a column major matrix. The number of rows is the dimension of
  /// parameter. The number of columns is specifed by num_cols.
  void createMatrix(const CreateMatrixRequest& request,
                    ProtoResponseCallback callback);

  void releaseMatrix(const ReleaseMatrixRequest& request,
                     ProtoResponseCallback callback);
  /**
   * @brief stateful control for indicationg sync pass start
   *
   * @note  it is valuable for logging and state control,
   *        especially for sync-sgd control
   */
  void waitPassStart(const WaitPassStartRequest& request,
                     ProtoResponseCallback callback);

  /**
   * @brief stateful control for indicationg sync pass end
   *
   * @note  it is valuable for logging and state control,
   *        especially for sync-sgd control
   */
  void waitPassFinish(const WaitPassFinishRequest& request,
                      ProtoResponseCallback callback);

  /**
   * @brief synchronize all distributed trainers
   *
   * @note  it's general api for synchronizing trainer and pserver
   */
  void synchronize(const SynchronizeRequest& request,
                   ProtoResponseCallback callback);

  /**
   * @brief stateful control for indicating async pass is finished
   *
   * @note  it is valuable for logging control, state reset, etc.
   */
  void asyncFinishPass(const SynchronizeRequest& request,
                       ProtoResponseCallback callback);

  void loadValueVector(const LoadValueRequest& request,
                       ProtoResponseCallback callback);

  void saveValueVector(const SaveValueRequest& request,
                       ProtoResponseCallback callback);

public:
  /**
   * @brief initialize parameter server
   */
  bool init();

  /**
   * @brief set parameters at pserver
   *
   * @note  do parameter initialization if neccessy.
   */
  void setParameter(const SendParameterRequest& request,
                    std::vector<Buffer>& inputBuffers,
                    SendParameterResponse* response,
                    std::vector<Buffer>* outputBuffers);

  /**
   * @brief receive gradients and do optimization for async-sgd
   *
   * @note  this api asynchronizately receives all data from all
   *        trainers, and immediately do optimization and return
   *        optimizated value for trainer.
   *        this above routine are block based atomic updating,
   *        which means different block could based different stale
   *        gradient.
   *        it will discard some lagged gradients by default for
   *        better convergence.
   */
  void asyncSGD(const SendParameterRequest& request,
                std::vector<Buffer>& inputBuffers,
                SendParameterResponse* response,
                std::vector<Buffer>* outputBuffers);

  /**
   * @brief merge gradients from all trainer
   *
   * @note  this api use block based parallelization as fine grained
   *        parallelization which benifits lock contention and latency
   *        hidden for communication, also can harness multi-core
   *        efficiently.
   *        it also implements the synchronization for sync-sgd
   */
  void addGradient(const SendParameterRequest& request,
                   std::vector<Buffer>& inputBuffers,
                   SendParameterResponse* response,
                   std::vector<Buffer>* outputBuffers);

  /**
   * @brief get dense parameters from pserver
   *
   * @note  for some specified condition, trainer will get parameters from
   *        pservers.
   *        e.g.
   *        if all parameters are stored at perver end for big model training
   *        trainer can use it to retrieve all parameters if necessary.
   */
  void getParameter(const SendParameterRequest& request,
                    std::vector<Buffer>& inputBuffers,
                    SendParameterResponse* response,
                    std::vector<Buffer>* outputBuffers);

  /**
   * @brief get sparse value from parameter server
   *
   * @note  with sparse enabled, pservers own all latest value
   *        while trainer only retrieve value that only are needed.
   *        e.g.
   *        trainer will do prefetch action to retrieve necessary latest
   *        value from pserver for sparse calculation.
   */
  void getParameterSparse(const SendParameterRequest& request,
                          std::vector<Buffer>& inputBuffers,
                          SendParameterResponse* response,
                          std::vector<Buffer>* outputBuffers);

protected:
  void mergeSegments(BlockSegments* segments);

  /// set the unused segments to zero
  void clearUnusedSegments(CpuVector* vec);

  // TODO(yanfei):
  // if read data and do optimization interleavely block by block,
  // the performance could be better for gaining less network congestion.
  /// read all data from connection and store it in static pre-allocated buffer
  void readAllBlocks(MsgReader* msgReader,
                     std::vector<ParameterServer2::Buffer>* buffers);

  const ParameterConfig& getParameterConfig(const ParameterBlock& block) {
529 530
    CHECK_LT(block.para_id(), -1UL) << "invalid parameter id:"
                                    << block.para_id();
Z
zhangjinchao01 已提交
531
    const auto it = configMap_.find(block.para_id());
532 533
    CHECK(it != configMap_.end()) << "can not find parameter id: "
                                  << block.para_id();
Z
zhangjinchao01 已提交
534 535 536 537 538
    return it->second;
  }

  /// it implictly check blockOffsetMap_ while retrieving blockId
  const ParameterConfig& getParameterConfig(int64_t blockId) const {
539
    CHECK(blockId >= 0 && blockId < (int64_t)blockInfos_.size())
Z
zhangjinchao01 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
        << "block idx out of range, id: " << blockId
        << " info size: " << blockInfos_.size();
    return *(blockInfos_[blockId].config);
  }

  template <class Response>
  bool isValidVectorHandle(int64_t handle, Response* response) {
    if (handle < 0 || (size_t)handle >= vectors_.size()) {
      LOG(ERROR) << "Invalid vector handle " << handle;
      response->set_return_message(kRetMsgInvalidVectorHandle);
      return false;
    }
    return true;
  }

  template <class Response>
  bool isValidMatrixHandle(int64_t handle, Response* response) {
    if (handle < 0 || (size_t)handle >= matrices_.size()) {
      LOG(ERROR) << "Invalid matrix handle " << handle;
      response->set_return_message(kRetMsgInvalidMatrixHandle);
      return false;
    }
    return true;
  }

  /**
   * @brief get block offset
   *
   * @note  block.begin_dim is added to the block offset.
   *        return -1 if block cannot be found
   */
  int64_t getBlockOffset(const ParameterBlock& block) const {
    BlockKey key(block.para_id(), block.block_id());
    auto it = blockOffsetMap_.find(key);
    if (it == blockOffsetMap_.end()) {
      return -1;
    }
    return it->second;
  }

  /// return -1 if block cannot be found
  int64_t getBlockId(const ParameterBlock& block) const {
    BlockKey key(block.para_id(), block.block_id());
    auto it = blockIdMap_.find(key);
    if (it == blockIdMap_.end()) {
      return -1;
    }
    return it->second;
  }

  /**
   * @brief prepare data for sending back
   *
   * @note  modify reponse and outputBuffers for sending parameter
   *        back to client. The buffer for socket sending uses
   *        vectors_[parameterType] directly
   *        for dense with sync-sgd
   */
598 599
  void sendBackParameter(const ParameterBlock& block,
                         int parameterType,
Z
zhangjinchao01 已提交
600 601 602 603 604 605 606 607 608 609 610 611
                         SendParameterResponse* response,
                         std::vector<Buffer>* outputBuffers);

  /**
   * @brief prepare data for sending back
   *
   * @note  modify response and outputBuffers for sending parameter
   *        back to client. The buffer for socket sending uses buffer->base
   *        The parameter values are copied from vectors_[parameterType]
   *        to buffer->base.
   *        for dense with async-sgd
   */
612 613 614 615
  void sendBackParameter(const ParameterBlock& block,
                         int parameterType,
                         SendParameterResponse* response,
                         Buffer* buffer,
Z
zhangjinchao01 已提交
616 617 618 619 620 621
                         std::vector<Buffer>* outputBuffers);
  /**
   * @brief prepare data for sending back
   *
   * @note  specified for sparse
   */
622 623 624 625
  void sendBackParameterSparse(const ParameterBlock& block,
                               int parameterType,
                               SendParameterResponse* response,
                               Buffer* buffer,
Z
zhangjinchao01 已提交
626 627 628 629 630 631 632 633 634 635 636
                               size_t width,
                               std::vector<Buffer>* outputBuffers);

  /**
   * framework routine for block parallelization
   * e.g.
   * for optimization on all blocks at pserver end, this routine can facilitize
   * the parallelize of do optimization on all blocks with multithreads.
   */
  typedef std::function<void(int64_t blockId, const VectorPtr vecs[])> ExecFunc;
  void parallelExecForEachBlock(ExecFunc func);
637 638 639 640 641
  void blockTraverse(BlockInfo& info,
                     const ParameterConfig& config,
                     int64_t offset,
                     size_t size,
                     const VectorPtr vecs[],
Z
zhangjinchao01 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
                     const ParameterOptimizer::TraverseCallback& callback);

public:
  typedef void (ParameterServer2::*OperatorFunction)(const Operation& operation,
                                                     OperationResult* result);

  /**
   * doOperation will call following operations indirectly
   * e.g.
   * for sync-sgd control, the controller in remote updater will send op_SGD
   * command to pserver, then send sendParameter request to pserver immediately.
   * the two function at pserver end will do cooperation to achieve the sync-sgd
   * gradient merge and optimization.
   * the most following operations are specified for owlqn, all operations are
   * under the context of doOperation function
   */
  static OperatorFunction opFuncs[];

  void op_SGD(const Operation& operation, OperationResult* result);

  void op_RESET(const Operation& operation, OperationResult* result);

  void op_utv(const Operation& operation, OperationResult* result);

  void op_au_bv(const Operation& operation, OperationResult* result);

  void op_COPY(const Operation& operation, OperationResult* result);

  void op_au(const Operation& operation, OperationResult* result);

  void op_au_bv_cw(const Operation& operation, OperationResult* result);

  void op_make_steepest_desc_dir(const Operation& operation,
                                 OperationResult* result);

  void op_fix_dir_signs(const Operation& operation, OperationResult* result);

  void op_dir_deriv(const Operation& operation, OperationResult* result);

  void op_fix_omega_signs(const Operation& operation, OperationResult* result);

  void op_cost(const Operation& operation, OperationResult* result);

  void op_start_pass(const Operation& operation, OperationResult* result);
  void op_finish_pass(const Operation& operation, OperationResult* result);

  void op_apply(const Operation& operation, OperationResult* result);

  void op_randomize(const Operation& operation, OperationResult* result);

  void op_load(const Operation& operation, OperationResult* result);
  void op_save(const Operation& operation, OperationResult* result);
};

}  // namespace paddle