yolov3_r34.yml 1.2 KB
Newer Older
1 2 3 4 5 6 7 8
architecture: YOLOv3
use_gpu: true
max_iters: 500200
log_smooth_window: 20
save_dir: output
snapshot_iter: 2000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
9
weights: output/yolov3_r34/model_final
10
num_classes: 80
K
Kaipeng Deng 已提交
11
use_fine_grained_loss: false
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 34
  feature_maps: [3, 4, 5]

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
K
Kaipeng Deng 已提交
31
  yolo_loss: YOLOv3Loss
32 33 34 35 36 37 38 39
  nms:
    background_label: -1
    keep_top_k: 100
    nms_threshold: 0.45
    nms_top_k: 1000
    normalized: false
    score_threshold: 0.01

K
Kaipeng Deng 已提交
40 41 42
YOLOv3Loss:
  batch_size: 8
  ignore_thresh: 0.7
K
Kaipeng Deng 已提交
43
  label_smooth: true
K
Kaipeng Deng 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
LearningRate:
  base_lr: 0.001
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 400000
    - 450000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

65
_READER_: 'yolov3_reader.yml'