vehicle_plate.py 11.0 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
from functools import reduce

import time
import cv2
import numpy as np
import math
import paddle

import sys
Z
zhiboniu 已提交
27
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
Z
zhiboniu 已提交
28 29
sys.path.insert(0, parent_path)

Z
zhiboniu 已提交
30
from python.infer import get_test_images
Z
zhiboniu 已提交
31
from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32
Z
zhiboniu 已提交
32 33 34
from pipeline.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes
from pipeline.ppvehicle.vehicleplate_postprocess import build_post_process
from pipeline.pipe_utils import merge_cfg, print_arguments, argsparser
Z
zhiboniu 已提交
35 36 37


class PlateDetector(object):
Z
zhiboniu 已提交
38
    def __init__(self, args, cfg):
Z
zhiboniu 已提交
39 40 41
        self.args = args
        self.pre_process_list = {
            'Resize_Mult32': {
Z
zhiboniu 已提交
42 43
                'limit_side_len': cfg['det_limit_side_len'],
                'limit_type': cfg['det_limit_type'],
Z
zhiboniu 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
            },
            'NormalizeImage': {
                'mean': [0.485, 0.456, 0.406],
                'std': [0.229, 0.224, 0.225],
                'is_scale': True,
            },
            'Permute': {}
        }
        postprocess_params = {}
        postprocess_params['name'] = 'DBPostProcess'
        postprocess_params["thresh"] = 0.3
        postprocess_params["box_thresh"] = 0.6
        postprocess_params["max_candidates"] = 1000
        postprocess_params["unclip_ratio"] = 1.5
        postprocess_params["use_dilation"] = False
        postprocess_params["score_mode"] = "fast"

        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
Z
zhiboniu 已提交
63
            args, cfg, 'det')
Z
zhiboniu 已提交
64

Z
zhiboniu 已提交
65
    def preprocess(self, im_path):
Z
zhiboniu 已提交
66 67 68 69 70 71
        preprocess_ops = []
        for op_type, new_op_info in self.pre_process_list.items():
            preprocess_ops.append(eval(op_type)(**new_op_info))

        input_im_lst = []
        input_im_info_lst = []
Z
zhiboniu 已提交
72 73 74 75

        im, im_info = preprocess(im_path, preprocess_ops)
        input_im_lst.append(im)
        input_im_info_lst.append(im_info['im_shape'] / im_info['scale_factor'])
Z
zhiboniu 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        return np.stack(input_im_lst, axis=0), input_im_info_lst

    def order_points_clockwise(self, pts):
        rect = np.zeros((4, 2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(points.shape[0]):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 3 or rect_height <= 3:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

Z
zhiboniu 已提交
118
    def predict_image(self, img_list):
Z
zhiboniu 已提交
119 120
        st = time.time()

Z
zhiboniu 已提交
121
        dt_batch_boxes = []
Z
zhiboniu 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        for image in img_list:
            img, shape_list = self.preprocess(image)
            if img is None:
                return None, 0

            self.input_tensor.copy_from_cpu(img)
            self.predictor.run()
            outputs = []
            for output_tensor in self.output_tensors:
                output = output_tensor.copy_to_cpu()
                outputs.append(output)

            preds = {}
            preds['maps'] = outputs[0]

            #self.predictor.try_shrink_memory()
            post_result = self.postprocess_op(preds, shape_list)
            # print("post_result length:{}".format(len(post_result)))

            org_shape = image.shape
            dt_boxes = post_result[0]['points']
Z
zhiboniu 已提交
143 144
            dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape)
            dt_batch_boxes.append(dt_boxes)
Z
zhiboniu 已提交
145 146

        et = time.time()
Z
zhiboniu 已提交
147
        return dt_batch_boxes, et - st
Z
zhiboniu 已提交
148 149 150


class TextRecognizer(object):
Z
zhiboniu 已提交
151 152 153 154
    def __init__(self, args, cfg, use_gpu=True):
        self.rec_image_shape = cfg['rec_image_shape']
        self.rec_batch_num = cfg['rec_batch_num']
        word_dict_path = cfg['word_dict_path']
Z
zhiboniu 已提交
155
        use_space_char = True
Z
zhiboniu 已提交
156 157 158 159

        postprocess_params = {
            'name': 'CTCLabelDecode',
            "character_dict_path": word_dict_path,
Z
zhiboniu 已提交
160
            "use_space_char": use_space_char
Z
zhiboniu 已提交
161 162 163
        }
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor, self.input_tensor, self.output_tensors, self.config = \
Z
zhiboniu 已提交
164
            create_predictor(args, cfg, 'rec')
Z
zhiboniu 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        self.use_onnx = False

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape

        assert imgC == img.shape[2]
        imgW = int((imgH * max_wh_ratio))
        if self.use_onnx:
            w = self.input_tensor.shape[3:][0]
            if w is not None and w > 0:
                imgW = w

        h, w = img.shape[:2]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

Z
zhiboniu 已提交
192
    def predict_text(self, img_list):
Z
zhiboniu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the recognition process
        indices = np.argsort(np.array(width_list))
        rec_res = [['', 0.0]] * img_num
        batch_num = self.rec_batch_num
        st = time.time()
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            imgC, imgH, imgW = self.rec_image_shape
            max_wh_ratio = imgW / imgH
            # max_wh_ratio = 0
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
Z
zhiboniu 已提交
214 215 216 217
                norm_img = self.resize_norm_img(img_list[indices[ino]],
                                                max_wh_ratio)
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
Z
zhiboniu 已提交
218 219
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
Z
zhiboniu 已提交
220 221 222 223 224
            if self.use_onnx:
                input_dict = {}
                input_dict[self.input_tensor.name] = norm_img_batch
                outputs = self.predictor.run(self.output_tensors, input_dict)
                preds = outputs[0]
Z
zhiboniu 已提交
225
            else:
Z
zhiboniu 已提交
226 227 228 229 230 231 232 233
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()
                outputs = []
                for output_tensor in self.output_tensors:
                    output = output_tensor.copy_to_cpu()
                    outputs.append(output)
                if len(outputs) != 1:
                    preds = outputs
Z
zhiboniu 已提交
234
                else:
Z
zhiboniu 已提交
235
                    preds = outputs[0]
Z
zhiboniu 已提交
236 237 238 239 240 241 242
            rec_result = self.postprocess_op(preds)
            for rno in range(len(rec_result)):
                rec_res[indices[beg_img_no + rno]] = rec_result[rno]
        return rec_res, time.time() - st


class PlateRecognizer(object):
Z
zhiboniu 已提交
243 244 245 246
    def __init__(self, args, cfg):
        use_gpu = args.device.lower() == "gpu"
        self.platedetector = PlateDetector(args, cfg)
        self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu)
Z
zhiboniu 已提交
247 248 249 250 251

    def get_platelicense(self, image_list):
        plate_text_list = []
        plateboxes, det_time = self.platedetector.predict_image(image_list)
        for idx, boxes_pcar in enumerate(plateboxes):
Z
zhiboniu 已提交
252
            plate_pcar_list = []
Z
zhiboniu 已提交
253 254 255
            for box in boxes_pcar:
                plate_images = get_rotate_crop_image(image_list[idx], box)
                plate_texts = self.textrecognizer.predict_text([plate_images])
Z
zhiboniu 已提交
256 257
                plate_pcar_list.append(plate_texts)
            plate_text_list.append(plate_pcar_list)
Z
zhiboniu 已提交
258 259 260 261 262 263 264 265
        return self.check_plate(plate_text_list)

    def check_plate(self, text_list):
        simcode = [
            '浙', '粤', '京', '津', '冀', '晋', '蒙', '辽', '黑', '沪', '吉', '苏', '皖',
            '赣', '鲁', '豫', '鄂', '湘', '桂', '琼', '渝', '川', '贵', '云', '藏', '陕',
            '甘', '青', '宁'
        ]
Z
zhiboniu 已提交
266 267
        plate_all = {"plate": []}
        for text_pcar in text_list:
Z
zhiboniu 已提交
268
            platelicense = ""
Z
zhiboniu 已提交
269 270
            for text_info in text_pcar:
                text = text_info[0][0][0]
Z
zhiboniu 已提交
271
                if len(text) > 2 and len(text) < 10:
Z
zhiboniu 已提交
272 273 274
                    platelicense = text
            plate_all["plate"].append(platelicense)
        return plate_all
Z
zhiboniu 已提交
275 276 277


def main():
Z
zhiboniu 已提交
278 279 280 281
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
    vehicleplate_cfg = cfg['VEHICLE_PLATE']
    detector = PlateRecognizer(FLAGS, vehicleplate_cfg)
Z
zhiboniu 已提交
282 283 284 285 286
    # predict from image
    img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
    for img in img_list:
        image = cv2.imread(img)
        results = detector.get_platelicense([image])
Z
zhiboniu 已提交
287
        print(results)
Z
zhiboniu 已提交
288 289 290 291 292 293 294 295 296 297 298


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()