README_en.md 8.0 KB
Newer Older
Y
YixinKristy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
English | [简体中文](README.md)

# PP-Human— a Real-Time Pedestrian Analysis Tool

PP-Human serves as the first open-source tool of real-time pedestrian anaylsis relying on the PaddlePaddle deep learning framework. Versatile and efficient in deployment, it has been used in various senarios. PP-Human
offers many input options, including image/single-camera video/multi-camera video, and covers multi-object tracking, attribute recognition, and behavior analysis. PP-Human can be applied to intelligent traffic, the intelligent community, industiral patrol, and so on. It supports server-side deployment and TensorRT acceleration,and even can achieve real-time analysis on the T4 server.

## I. Environment Preparation

Requirement: PaddleDetection version >= release/2.4


The installation of PaddlePaddle and PaddleDetection

```
# PaddlePaddle CUDA10.1
python -m pip install paddlepaddle-gpu==2.2.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

# PaddlePaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

# Clone the PaddleDetection repository
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git

# Install other dependencies
cd PaddleDetection
pip install -r requirements.txt
```

For details of the installation, please refer to this [document](docs/tutorials/INSTALL_cn.md)

## II. Quick Start

### 1. Model Download

To make users have access to models of different scenarios, PP-Human provides pre-trained models of object detection, attribute recognition, behavior recognition, and ReID.

| Task            | Scenario | Precision | Inference Speed(FPS) | Model Inference and Deployment |
| :---------:     |:---------:     |:---------------     | :-------:  | :------:      |
| Object Detection        | Image/Video Input | -  | -           | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
| Attribute Recognition    | Image/Video Input  Attribute Recognition | - |  -       | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.tar) |
| Keypoint Detection    | Video Input  Behavior Recognition | - | -        | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)
| Behavior Recognition   |  Video Input  Bheavior Recognition  | - |  -          | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |
| ReID         | Video Input Cross Cross-camera Tracking   | - | -         | [Link]() |

Then, unzip the downloaded model to the folder `./output_inference`.

**Note: **

- The model precision is decided by the fusion of datasets which include open-source datasets and enterprise ones.
- When the inference speed is T4, use TensorRT FP16.

### 2. Preparation of Configuration Files

Configuration files of PP-Human are stored in ```deploy/pphuman/config/infer_cfg.yml```. Different tasks are for different functions, so you need to set the task type beforhand.

Their correspondence is as follows:

| Input | Function | Task Type | Config |
|-------|-------|----------|-----|
| Image | Attribute Recognition | Object Detection  Attribute Recognition | DET ATTR |
| Single-Camera Video | Attribute Recognition | Multi-Object Tracking  Attribute Recognition | MOT ATTR |
| Single-Camera Video | Behavior Recognition | Multi-Object Tracking  Keypoint Detection  Behavior Recognition | MOT KPT ACTION |

For example, for the attribute recognition with the video input, its task types contain multi-object tracking and attribute recognition, and the config is:

```
crop_thresh: 0.5
attr_thresh: 0.5
visual: True

MOT:
  model_dir: output_inference/mot_ppyoloe_l_36e_pipeline/
  tracker_config: deploy/pphuman/config/tracker_config.yml
  batch_size: 1

ATTR:
  model_dir: output_inference/strongbaseline_r50_30e_pa100k/
  batch_size: 8
```



### 3. Inference and Deployment

```
# Specify the config file path and test images
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --image_file=test_image.jpg --device=gpu

# Specify the config file path and test videos,and finish the attribute recognition
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_attr=True

# Specify the config file path and test videos,and finish the behavior recognition
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --enable_action=True

# Specify the config file path, the model path and test videos,and finish the multi-object tracking
# The model path specified on the command line prioritizes over the config file
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml --video_file=test_video.mp4 --device=gpu --model_dir det=ppyoloe/
```

### 3.1 Description of Parameters

| Parameter | Optional or not| Meaning |
|-------|-------|----------|
| --config | Yes | Config file path |
| --model_dir | Option | the model paths of different tasks in PP-Human, with a priority higher than config files |
| --image_file | Option | Images to-be-predicted  |
| --image_dir  | Option |  The path of folders of to-be-predicted images  |
| --video_file | Option | Videos to-be-predicted |
| --camera_id | Option | ID of the inference camera is -1 by default (means inference without cameras,and it can be set to 0 - (number of cameras-1)), and during the inference, click `q` on the visual interface to exit and output the inference result to output/output.mp4|
| --enable_attr| Option | Enable attribute recognition or not |
| --enable_action| Option | Enable behavior recognition or not |
| --device | Option | During the operation,available devices are `CPU/GPU/XPU`,and the default is `CPU`|
| --output_dir | Option| The default root directory which stores the visualization result is output/|
| --run_mode | Option | When using GPU,the default one is paddle, and all these are available(paddle/trt_fp32/trt_fp16/trt_int8).|
| --enable_mkldnn | Option |Enable the MKLDNN acceleration or not in the CPU inference, and the default value is false |
| --cpu_threads | Option| The default CPU thread is 1 |
| --trt_calib_mode | Option| Enable calibration on TensorRT or not, and the default is False. When using the int8 of TensorRT,it should be set to True; When using the model quantized by PaddleSlim, it should be set to False. |


## III. Introduction to the Solution

The overall solution of PP-Human is as follows:

<div width="1000" align="center">
  <img src="https://user-images.githubusercontent.com/48054808/160078395-e7b8f2db-1d1c-439a-91f4-2692fac25511.png"/>
</div>


### 1. Object Detection
- Use PP-YOLOE L as the model of object detection
- For details, please refer to [PP-YOLOE](../../configs/ppyoloe/)

### 2. Multi-Object Tracking
- Conduct multi-object tracking with the SDE solution
- Use PP-YOLOE L as the detection model
- Use the Bytetrack solution to track modules
- For details, refer to [Bytetrack](configs/mot/bytetrack)

### 3. Cross-Camera Tracking
- Use PP-YOLOE + Bytetrack to obtain the tracks of single-camera multi-object tracking
- Use ReID(centroid network)to extract features of the detection result of each frame
- Match the features of multi-camera tracks to get the cross-camera tracking result
- For details, please refer to [Cross-Camera Tracking](docs/mtmct_en.md)

### 4. Attribute Recognition
- Use PP-YOLOE + Bytetrack to track humans
- Use StrongBaseline(a multi-class model)to conduct attribute recognition, and the main attributes include age, gender, hats, eyes, clothing, and backpacks.
- For details, please refer to [Attribute Recognition](docs/attribute_en.md)

### 5. Behavior Recognition
- Use PP-YOLOE + Bytetrack to track humans
- Use HRNet for keypoint detection and get the information of the 17 key points in the human body
- According to the changes of the key points of the same person within 50 frames, judge whether the action made by the person within 50 frames is a fall with the help of ST-GCN
- For details, please refer to [Behavior Recognition](docs/action_en.md)