iou_loss.py 7.1 KB
Newer Older
C
CodesFarmer 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import NumpyArrayInitializer

from paddle import fluid
from ppdet.core.workspace import register, serializable

__all__ = ['IouLoss']


@register
@serializable
class IouLoss(object):
    """
    iou loss, see https://arxiv.org/abs/1908.03851
    loss = 1.0 - iou * iou
    Args:
        loss_weight (float): iou loss weight, default is 2.5
        max_height (int): max height of input to support random shape input
        max_width (int): max width of input to support random shape input
    """
    def __init__(self,
                 loss_weight=2.5,
                 max_height=608,
                 max_width=608):
        self._loss_weight = loss_weight
        self._MAX_HI = max_height
        self._MAX_WI = max_width

    def __call__(self, x, y, w, h, tx, ty, tw, th,
                 anchors, downsample_ratio, batch_size, eps=1.e-10):
        '''
        Args:
            x  | y | w | h  ([Variables]): the output of yolov3 for encoded x|y|w|h
            tx |ty |tw |th  ([Variables]): the target of yolov3 for encoded x|y|w|h
            anchors ([float]): list of anchors for current output layer
            downsample_ratio (float): the downsample ratio for current output layer
            batch_size (int): training batch size
            eps (float): the decimal to prevent the denominator eqaul zero
        '''
        x1, y1, x2, y2 = self._bbox_transform(x, y, w, h, anchors,
            downsample_ratio, batch_size, False)
        x1g, y1g, x2g, y2g = self._bbox_transform(tx, ty, tw, th,
            anchors, downsample_ratio, batch_size, True)

        x2 = fluid.layers.elementwise_max(x1, x2)
        y2 = fluid.layers.elementwise_max(y1, y2)

        xkis1 = fluid.layers.elementwise_max(x1, x1g)
        ykis1 = fluid.layers.elementwise_max(y1, y1g)
        xkis2 = fluid.layers.elementwise_min(x2, x2g)
        ykis2 = fluid.layers.elementwise_min(y2, y2g)

        xc1 = fluid.layers.elementwise_min(x1, x1g)
        yc1 = fluid.layers.elementwise_min(y1, y1g)
        xc2 = fluid.layers.elementwise_max(x2, x2g)
        yc2 = fluid.layers.elementwise_max(y2, y2g)

        intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
        intsctk = intsctk * fluid.layers.greater_than(
            xkis2, xkis1) * fluid.layers.greater_than(ykis2, ykis1)
        unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g) - intsctk + eps
        iouk = intsctk / unionk
        loss_iou = 1. - iouk * iouk
        loss_iou = loss_iou * self._loss_weight

        return loss_iou

    def _bbox_transform(self, dcx, dcy, dw, dh, anchors, downsample_ratio, batch_size, is_gt):
        grid_x = int(self._MAX_WI / downsample_ratio)
        grid_y = int(self._MAX_HI / downsample_ratio)
        an_num = len(anchors) // 2

        shape_fmp = fluid.layers.shape(dcx)
        shape_fmp.stop_gradient = True
        # generate the grid_w x grid_h center of feature map
        idx_i = np.array([[i for i in range(grid_x)]])
        idx_j = np.array([[j for j in range(grid_y)]]).transpose()
        gi_np = np.repeat(idx_i, grid_y, axis=0)
        gi_np = np.reshape(gi_np, newshape=[1, 1, grid_y, grid_x])
        gi_np = np.tile(gi_np, reps=[batch_size, an_num, 1, 1])
        gj_np = np.repeat(idx_j, grid_x, axis=1)
        gj_np = np.reshape(gj_np, newshape=[1, 1, grid_y, grid_x])
        gj_np = np.tile(gj_np, reps=[batch_size, an_num, 1, 1])
        gi_max = self._create_tensor_from_numpy(gi_np.astype(np.float32))
        gi = fluid.layers.crop(x=gi_max, shape=dcx)
        gi.stop_gradient = True
        gj_max = self._create_tensor_from_numpy(gj_np.astype(np.float32))
        gj = fluid.layers.crop(x=gj_max, shape=dcx)
        gj.stop_gradient = True

        grid_x_act = fluid.layers.cast(shape_fmp[3], dtype="float32")
        grid_x_act.stop_gradient = True
        grid_y_act = fluid.layers.cast(shape_fmp[2], dtype="float32")
        grid_y_act.stop_gradient = True
        if is_gt:
            cx = fluid.layers.elementwise_add(dcx, gi) / grid_x_act
            cx.gradient = True
            cy = fluid.layers.elementwise_add(dcy, gj) / grid_y_act
            cy.gradient = True
        else:
            dcx_sig = fluid.layers.sigmoid(dcx)
            cx = fluid.layers.elementwise_add(dcx_sig, gi) / grid_x_act
            dcy_sig = fluid.layers.sigmoid(dcy)
            cy = fluid.layers.elementwise_add(dcy_sig, gj) / grid_y_act

        anchor_w_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 0]
        anchor_w_np = np.array(anchor_w_)
        anchor_w_np = np.reshape(anchor_w_np, newshape=[1, an_num, 1, 1])
        anchor_w_np = np.tile(anchor_w_np, reps=[batch_size, 1, grid_y, grid_x])
        anchor_w_max = self._create_tensor_from_numpy(anchor_w_np.astype(np.float32))
        anchor_w = fluid.layers.crop(x=anchor_w_max, shape=dcx)
        anchor_w.stop_gradient = True
        anchor_h_ = [anchors[i] for i in range(0, len(anchors)) if i % 2 == 1]
        anchor_h_np = np.array(anchor_h_)
        anchor_h_np = np.reshape(anchor_h_np, newshape=[1, an_num, 1, 1])
        anchor_h_np = np.tile(anchor_h_np, reps=[batch_size, 1, grid_y, grid_x])
        anchor_h_max = self._create_tensor_from_numpy(anchor_h_np.astype(np.float32))
        anchor_h = fluid.layers.crop(x=anchor_h_max, shape=dcx)
        anchor_h.stop_gradient = True
        # e^tw e^th
        exp_dw = fluid.layers.exp(dw)
        exp_dh = fluid.layers.exp(dh)
        pw = fluid.layers.elementwise_mul(exp_dw, anchor_w) / \
            (grid_x_act * downsample_ratio)
        ph = fluid.layers.elementwise_mul(exp_dh, anchor_h) / \
            (grid_y_act * downsample_ratio)
        if is_gt:
            exp_dw.stop_gradient = True
            exp_dh.stop_gradient = True
            pw.stop_gradient = True
            ph.stop_gradient = True
        

        x1 = cx - 0.5 * pw
        y1 = cy - 0.5 * ph
        x2 = cx + 0.5 * pw
        y2 = cy + 0.5 * ph
        if is_gt:
            x1.stop_gradient = True
            y1.stop_gradient = True
            x2.stop_gradient = True
            y2.stop_gradient = True

        return x1, y1, x2, y2

    def _create_tensor_from_numpy(self, numpy_array):
        paddle_array = fluid.layers.create_parameter(
            attr=ParamAttr(),
            shape=numpy_array.shape,
            dtype=numpy_array.dtype,
            default_initializer=NumpyArrayInitializer(numpy_array))
        paddle_array.stop_gradient = True
        return paddle_array