lrn_op.cc 10.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lrn_op.h"
16
#include <string>
17
#include "paddle/fluid/operators/math/blas.h"
T
Tomasz Patejko 已提交
18 19 20
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

27
template <typename T>
Q
QI JUN 已提交
28
struct LRNFunctor<platform::CPUDeviceContext, T> {
29 30 31 32
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta) {
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    const T* idata = input.data<T>();
    auto place = ctx.GetPlace();
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    T* odata = out->mutable_data<T>(place);
    T* mdata = mid->mutable_data<T>(place);
    Tensor squared;
    T* sdata = squared.mutable_data<T>({1, C + n - 1, H, W}, place);
    std::memset(sdata, 0, sizeof(T) * squared.numel());
    for (int i = 0; i < mid->numel(); ++i) {
      mdata[i] = k;
    }
    int img_size = H * W;
    int fea_size = C * img_size;
    int pre_pad = (n - 1) / 2;
    // compute batches one by one
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
49
      blas.VSQUARE(fea_size, idata + i * fea_size, sdata + pre_pad * img_size);
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
      // init the first channel of mid
      for (int c = 0; c < n; ++c) {
        blas.AXPY(img_size, alpha, sdata + c * img_size, mdata + i * fea_size);
      }
      for (int c = 1; c < C; ++c) {
        // copy previous scale
        int mid_offset = i * fea_size + c * img_size;
        std::memcpy(mdata + mid_offset, mdata + mid_offset - img_size,
                    img_size * sizeof(T));
        // add last
        blas.AXPY(img_size, alpha, sdata + (c + n - 1) * img_size,
                  mdata + mid_offset);
        // sub rest
        blas.AXPY(img_size, -alpha, sdata + (c - 1) * img_size,
                  mdata + mid_offset);
65 66
      }
    }
67 68 69
    // compute the final output
    blas.VPOW(mid->numel(), mdata, -beta, odata);
    blas.VMUL(mid->numel(), odata, idata, odata);
70 71
  }
};
Q
QI JUN 已提交
72 73
template struct LRNFunctor<platform::CPUDeviceContext, float>;
template struct LRNFunctor<platform::CPUDeviceContext, double>;
74 75

template <typename T>
Q
QI JUN 已提交
76
struct LRNGradFunctor<platform::CPUDeviceContext, T> {
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta) {
    T ratio = -2 * alpha * beta;
    auto x_g_e = framework::EigenVector<T>::Flatten(*x_g);
    x_g_e = x_g_e.constant(0.0);

    auto e_x = framework::EigenTensor<T, 4>::From(x);
    auto e_x_g = framework::EigenTensor<T, 4>::From(*x_g);
    auto e_out = framework::EigenTensor<T, 4>::From(out);
    auto e_out_g = framework::EigenTensor<T, 4>::From(out_g);
    auto e_mid = framework::EigenTensor<T, 4>::From(mid);

    const int start = -(n - 1) / 2;
    const int end = start + n;
    for (int m = 0; m < N; m++) {
      for (int i = 0; i < C; i++) {
        auto i_x = e_x.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                             Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_x_g = e_x_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                     Eigen::array<int, 4>({{1, 1, H, W}}));

        auto i_mid = e_mid.slice(Eigen::array<int, 4>({{m, i, 0, 0}}),
                                 Eigen::array<int, 4>({{1, 1, H, W}}));

        i_x_g = i_mid.pow(-beta) * i_out_g;
Q
qingqing01 已提交
109
        for (int c = start; c < end; c++) {
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
          int ch = i + c;
          if (ch < 0 || ch >= C) {
            continue;
          }

          auto c_out = e_out.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_mid = e_mid.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                   Eigen::array<int, 4>({{1, 1, H, W}}));

          auto c_out_g = e_out_g.slice(Eigen::array<int, 4>({{m, ch, 0, 0}}),
                                       Eigen::array<int, 4>({{1, 1, H, W}}));

          i_x_g += ratio * c_out_g * c_out * i_x / c_mid;
        }
      }
    }
  }
};
Q
QI JUN 已提交
130 131
template struct LRNGradFunctor<platform::CPUDeviceContext, float>;
template struct LRNGradFunctor<platform::CPUDeviceContext, double>;
132

133
namespace {
134 135 136
framework::OpKernelType GetExpectedLRNKernel(
    const framework::ExecutionContext& ctx) {
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
137 138 139
  std::string data_format = ctx.Attr<std::string>("data_format");
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
140
#ifdef PADDLE_WITH_MKLDNN
141 142 143
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
144
    layout_ = framework::DataLayout::kMKLDNN;
145
  }
146 147
#endif

Y
Yu Yang 已提交
148 149
  return framework::OpKernelType(ctx.Input<Tensor>("X")->type(), ctx.GetPlace(),
                                 layout_, library_);
150
}
151
}  // namespace
152

G
gongweibao 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
class LRNOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LRNOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MidOut"),
                   "MidOut(Out) of LRNOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dim.size(), 4, "Input(X)'rank of LRNOp should be 4.");

168 169 170
    int n = ctx->Attrs().Get<int>("n");
    PADDLE_ENFORCE(n > 0 && n % 2 == 1, "n should be positive odd value");

G
gongweibao 已提交
171 172
    ctx->SetOutputDim("Out", x_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
173
    ctx->SetOutputDim("MidOut", x_dim);
G
gongweibao 已提交
174
  }
T
Tomasz Patejko 已提交
175 176

  framework::OpKernelType GetExpectedKernelType(
177 178
      const framework::ExecutionContext& ctx) const override {
    return GetExpectedLRNKernel(ctx);
T
Tomasz Patejko 已提交
179
  }
G
gongweibao 已提交
180 181 182 183 184
};

template <typename T>
class LRNOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
185
  void Make() override {
K
kexinzhao 已提交
186 187 188
    AddInput("X",
             "(Tensor) The input of LRN operator. "
             "It must be a 4D tenor with NCHW format.");
G
gongweibao 已提交
189 190 191
    AddOutput("Out",
              "(Tensor) The output of LRN operator, which is also the 4D "
              "tensor with NCHW format.");
K
kexinzhao 已提交
192 193 194 195 196 197 198 199
    AddOutput("MidOut",
              "(Tensor) Middle result of LRN operator. It's computed in "
              "forward process and also used in backward process.");

    AddAttr<int>("n",
                 "(int default 5) "
                 "n is the \"adjacent\" kernel that maps "
                 "at the same spatial position.")
G
gongweibao 已提交
200 201 202
        .SetDefault(5)
        .GreaterThan(0);

K
kexinzhao 已提交
203 204 205
    AddAttr<T>("k",
               "(float, default 2.0) "
               "k is the bias.")
G
gongweibao 已提交
206 207 208
        .SetDefault(2.0)
        .GreaterThan(0.0);

K
kexinzhao 已提交
209 210 211
    AddAttr<T>("alpha",
               "(float, default 0.0001) "
               "alpha is the scale number.")
G
gongweibao 已提交
212 213 214
        .SetDefault(0.0001)
        .GreaterThan(0.0);

K
kexinzhao 已提交
215 216 217
    AddAttr<T>("beta",
               "(float, default 0.75) "
               "beta is the power number.")
G
gongweibao 已提交
218 219
        .SetDefault(0.75)
        .GreaterThan(0.0);
T
Tomasz Patejko 已提交
220 221 222 223 224 225 226 227 228 229
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
230
    AddAttr<bool>("is_test",
231 232
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
233
        .SetDefault(false);
G
gongweibao 已提交
234 235

    AddComment(R"DOC(
K
kexinzhao 已提交
236
Local Response Normalization Operator.
G
gongweibao 已提交
237

238 239
This operator comes from the paper:
<<ImageNet Classification with Deep Convolutional Neural Networks>>.
G
gongweibao 已提交
240

K
kexinzhao 已提交
241
The original formula is:
G
gongweibao 已提交
242

K
kexinzhao 已提交
243 244 245 246 247 248
$$
Output(i, x, y) = Input(i, x, y) / \left(
k + \alpha \sum\limits^{\min(C, c + n/2)}_{j = \max(0, c - n/2)}
(Input(j, x, y))^2
\right)^{\beta}
$$
G
gongweibao 已提交
249

K
kexinzhao 已提交
250
Function implementation:
G
gongweibao 已提交
251

K
kexinzhao 已提交
252 253 254
Inputs and outpus are in NCHW format, while input.shape.ndims() equals 4.
And dimensions 0 ~ 3 represent batch size, feature maps, rows,
and columns, respectively.
G
gongweibao 已提交
255

K
kexinzhao 已提交
256 257
Input and Output in the formula above is for each map(i) of one image, and
Input(i, x, y), Output(i, x, y) represents an element in an image.
G
gongweibao 已提交
258

K
kexinzhao 已提交
259 260 261
C is the number of feature maps of one image. n is a hyper-parameter
configured when operator is initialized. The sum in the denominator
is the sum of the same positions in the neighboring maps.
Q
QI JUN 已提交
262

K
kexinzhao 已提交
263
)DOC");
G
gongweibao 已提交
264 265 266 267 268 269 270 271 272 273
  }
};

class LRNOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
274
    PADDLE_ENFORCE(ctx->HasInput("MidOut"), "Input(MidOut) should not be null");
G
gongweibao 已提交
275 276 277 278 279 280 281
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
  }

T
Tomasz Patejko 已提交
282
  framework::OpKernelType GetExpectedKernelType(
283 284
      const framework::ExecutionContext& ctx) const override {
    return GetExpectedLRNKernel(ctx);
T
Tomasz Patejko 已提交
285 286
  }
};
G
gongweibao 已提交
287 288 289 290
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
291
REGISTER_OPERATOR(lrn, ops::LRNOp, ops::LRNOpMaker<float>,
292 293
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(lrn_grad, ops::LRNOpGrad);
Q
QI JUN 已提交
294 295 296 297
REGISTER_OP_CPU_KERNEL(
    lrn, ops::LRNKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    lrn_grad, ops::LRNGradKernel<paddle::platform::CPUDeviceContext, float>);