unsqueeze_op.cc 10.9 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21

namespace paddle {
namespace operators {

22
class UnsqueezeOpInferShape : public framework::InferShapeBase {
23
 public:
24
  void operator()(framework::InferShapeContext *ctx) const override {
25
    PADDLE_ENFORCE(ctx->HasInput("X"),
26
                   "Input(X) of Unsqueeze operator should not be null.");
27
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
28
                   "Output(Out) of Unsqueeze operator should not be null.");
29

30 31
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
    const auto &x_dims = ctx->GetInputDim("X");
32
    // Validity Check: input tensor dims (<6).
33 34 35
    PADDLE_ENFORCE(x_dims.size() <= 6,
                   "Invalid dimensions, the rank of Input(X) "
                   "should be in the range of [1, 6] (Eigen limit)");
36 37
    auto out_dims = GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
38 39 40 41 42
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
43 44
  }

45
  static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
46
                                        const framework::DDim &in_dims) {
47 48
    int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
    int cur_output_size = in_dims.size();
49 50 51 52 53
    std::vector<int64_t> output_shape(output_size, 0);

    // Validity Check: rank range.
    PADDLE_ENFORCE(output_size <= 6,
                   "The output tensor's rank should be less than 6.");
54 55

    for (int axis : unsqz_dims) {
56
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
57 58
      // Vaildity Check: the axis bound
      PADDLE_ENFORCE(
59
          cur >= 0 && cur <= cur_output_size,
60
          "The unsqueeze dims must be within range of current rank.");
61 62 63 64 65 66 67 68 69
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }
      output_shape[cur] = 1;
70
      // Add the output size.
71
      cur_output_size++;
72 73
    }

74
    // Make output shape
75 76
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
77 78 79 80 81 82 83 84
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    return framework::make_ddim(output_shape);
  }
};

85 86
class UnsqueezeOp : public framework::OperatorBase {
 public:
87
  using OperatorBase::OperatorBase;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    auto out_dims = UnsqueezeOpInferShape::GetOutputShape(axes, x_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    // Invoke Reshape op.
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

106 107 108 109 110 111
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
    AddAttr<std::vector<int>>("axes",
112
                              "(std::vector<int>). List of integers,"
113
                              " indicating the dimensions to be inserted")
114
        .AddCustomChecker([](const std::vector<int> &axes) {
115 116
          PADDLE_ENFORCE(!axes.empty(),
                         "Invalid axes, The unsqueeze axes is empty.");
117 118
          // Validity Check: axes dims (<6).
          PADDLE_ENFORCE(static_cast<int>(axes.size()) < 6,
119 120
                         "Invalid dimensions, dynamic dimensions should be "
                         "within [1, 6] dimensions (Eigen limit).");
121 122 123
          // Validity Check: the range of unsqueeze aixs.
          for (int axis : axes) {
            PADDLE_ENFORCE(axis < 6,
124 125
                           "Invalid dimensions, input axis should be"
                           " within [1, 6] dimensions (Eigen limit).");
126 127
          }
        });
128
    AddComment(R"DOC(
129 130
    Unsqueeze Operator.

131 132 133 134 135 136
    Insert single-dimensional entries to the shape of a tensor.
    Takes one required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.

    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
137
      then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
138 139 140 141
    )DOC");
  }
};

142
class UnsqueezeGradInferShape : public framework::InferShapeBase {
143
 public:
144
  void operator()(framework::InferShapeContext *ctx) const override {
145
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
146
    ctx->ShareLoD("X", framework::GradVarName("X"));
147
  }
148
};
149

150 151
class UnsqueezeGradOp : public framework::OperatorBase {
 public:
152
  using OperatorBase::OperatorBase;
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
168 169 170
  }
};

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
class Unsqueeze2OpInferShape : public UnsqueezeOpInferShape {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    UnsqueezeOpInferShape::operator()(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output(XShape) of Unsqueeze operator should not be null.");
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
  }
};

class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
 public:
  void Make() override {
    UnsqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in UnsqueezeGradOp.")
        .AsIntermediate();
  }
};

class Unsqueeze2Op : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axes = Attr<std::vector<int>>("axes");
    auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    auto out_dims = Unsqueeze2OpInferShape::GetOutputShape(axes, x_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(out_dims);
    // Invoke Reshape op.
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape2", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

class Unsqueeze2GradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("unsqueeze2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

class Unsqueeze2GradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("XShape"),
                   "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }
};

class Unsqueeze2GradOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto xshape_name = Input("XShape");
    auto xshape_dims =
        scope.FindVar(xshape_name)->Get<framework::LoDTensor>().dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape2", {{"X", {dout_name}}, {"Shape", {}}},
        {{"Out", {dx_name}}, {"XShape", {xshape_name}}}, attrs);
    reshape_op->Run(scope, place);
  }
};
277 278 279
}  // namespace operators
}  // namespace paddle

280 281 282
// Tell linker to use reshape op.
USE_OP(reshape);

283 284
namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
285
                  ops::UnsqueezeOpInferShape,
286
                  paddle::framework::DefaultGradOpDescMaker<true>);
287 288
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
                  ops::UnsqueezeGradInferShape);
289 290 291 292 293

REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
                  ops::Unsqueeze2OpInferShape, ops::Unsqueeze2GradOpMaker);
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
                  ops::Unsqueeze2GradInferShape);