utils.py 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
17 18 19 20 21 22 23 24 25 26 27 28 29 30

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from ..bbox_utils import bbox_overlaps

__all__ = [
    '_get_clones', 'bbox_overlaps', 'bbox_cxcywh_to_xyxy',
31 32
    'bbox_xyxy_to_cxcywh', 'sigmoid_focal_loss', 'inverse_sigmoid',
    'deformable_attention_core_func'
33 34 35 36 37 38 39 40
]


def _get_clones(module, N):
    return nn.LayerList([copy.deepcopy(module) for _ in range(N)])


def bbox_cxcywh_to_xyxy(x):
41
    x_c, y_c, w, h = x.split(4, axis=-1)
42
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
43
    return paddle.concat(b, axis=-1)
44 45 46


def bbox_xyxy_to_cxcywh(x):
47
    x0, y0, x1, y1 = x.split(4, axis=-1)
48
    b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
49
    return paddle.concat(b, axis=-1)
50 51 52 53 54 55 56 57 58 59 60


def sigmoid_focal_loss(logit, label, normalizer=1.0, alpha=0.25, gamma=2.0):
    prob = F.sigmoid(logit)
    ce_loss = F.binary_cross_entropy_with_logits(logit, label, reduction="none")
    p_t = prob * label + (1 - prob) * (1 - label)
    loss = ce_loss * ((1 - p_t)**gamma)

    if alpha >= 0:
        alpha_t = alpha * label + (1 - alpha) * (1 - label)
        loss = alpha_t * loss
S
shangliang Xu 已提交
61
    return loss.mean(1).sum() / normalizer
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109


def inverse_sigmoid(x, eps=1e-6):
    x = x.clip(min=0., max=1.)
    return paddle.log(x / (1 - x + eps) + eps)


def deformable_attention_core_func(value, value_spatial_shapes,
                                   sampling_locations, attention_weights):
    """
    Args:
        value (Tensor): [bs, value_length, n_head, c]
        value_spatial_shapes (Tensor): [n_levels, 2]
        sampling_locations (Tensor): [bs, query_length, n_head, n_levels, n_points, 2]
        attention_weights (Tensor): [bs, query_length, n_head, n_levels, n_points]

    Returns:
        output (Tensor): [bs, Length_{query}, C]
    """
    bs, Len_v, n_head, c = value.shape
    _, Len_q, n_head, n_levels, n_points, _ = sampling_locations.shape

    value_list = value.split(value_spatial_shapes.prod(1).tolist(), axis=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level, (h, w) in enumerate(value_spatial_shapes.tolist()):
        # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
        value_l_ = value_list[level].flatten(2).transpose(
            [0, 2, 1]).reshape([bs * n_head, c, h, w])
        # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
        sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(
            [0, 2, 1, 3, 4]).flatten(0, 1)
        # N_*M_, D_, Lq_, P_
        sampling_value_l_ = F.grid_sample(
            value_l_,
            sampling_grid_l_,
            mode='bilinear',
            padding_mode='zeros',
            align_corners=False)
        sampling_value_list.append(sampling_value_l_)
    # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_*M_, 1, Lq_, L_*P_)
    attention_weights = attention_weights.transpose([0, 2, 1, 3, 4]).reshape(
        [bs * n_head, 1, Len_q, n_levels * n_points])
    output = (paddle.stack(
        sampling_value_list, axis=-2).flatten(-2) *
              attention_weights).sum(-1).reshape([bs, n_head * c, Len_q])

    return output.transpose([0, 2, 1])