README.md 13.5 KB
Newer Older
1 2
# PP-TinyPose

J
JYChen 已提交
3 4 5 6 7
<div align="center">
  <img src="../../../docs/images/tinypose_demo.png"/>
  <center>图片来源:COCO2017开源数据集</center>
</div>

8
## 简介
J
JYChen 已提交
9
PP-TinyPose是PaddleDetecion针对移动端设备优化的实时关键点检测模型,可流畅地在移动端设备上执行多人姿态估计任务。借助PaddleDetecion自研的优秀轻量级检测模型[PicoDet](../../picodet/README.md),我们同时提供了特色的轻量级垂类行人检测模型。TinyPose的运行环境有以下依赖要求:
10 11 12 13 14
- [PaddlePaddle](https://github.com/PaddlePaddle/Paddle)>=2.2

如希望在移动端部署,则还需要:
- [Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite)>=2.10

J
JYChen 已提交
15 16 17 18 19

<div align="center">
  <img src="../../../docs/images/tinypose_pipeline.png" width='800'/>
</div>

J
JYChen 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
## 部署案例

- [Android Fitness Demo](https://github.com/zhiboniu/pose_demo_android)  基于PP-TinyPose, 高效实现健身校准与计数功能。

<div align="center">
  <img src="../../../docs/images/fitness_demo.gif" width='636'/>
</div>

- 欢迎扫码快速体验
<div align="center">
  <img src="../../../docs/images/tinypose_app.png" width='220'/>
</div>


34
## 模型库
J
JYChen 已提交
35
### 关键点检测模型
J
JYChen 已提交
36
| 模型  | 输入尺寸 | AP (COCO Val) | 单人推理耗时 (FP32)| 单人推理耗时(FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16)|
37 38
| :------------------------ | :-------:  | :------: | :------: |:---: | :---: | :---: | :---: | :---: | :---: |
| PP-TinyPose | 128*96 | 58.1 | 4.57ms | 3.27ms | [Config](./tinypose_128x96.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
J
JYChen 已提交
39
| PP-TinyPose | 256*192 | 68.8 | 14.07ms | 8.33ms | [Config](./tinypose_256x192.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
40 41

### 行人检测模型
J
JYChen 已提交
42
| 模型  | 输入尺寸 | mAP (COCO Val) | 平均推理耗时 (FP32) | 平均推理耗时 (FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16)|
43 44 45 46 47 48
| :------------------------ | :-------:  | :------: | :------: | :---: | :---: | :---: | :---: | :---: | :---: |
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms |  2.37ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms |  6.30ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.nb) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb) |


**说明**
J
JYChen 已提交
49 50 51
- 关键点检测模型与行人检测模型均使用`COCO train2017``AI Challenger trainset`作为训练集。关键点检测模型使用`COCO person keypoints val2017`作为测试集,行人检测模型采用`COCO instances val2017`作为测试集。
- 关键点检测模型的精度指标所依赖的检测框为ground truth标注得到。
- 关键点检测模型与行人检测模型均在4卡环境下训练,若实际训练环境需要改变GPU数量或batch size, 须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md)对应调整学习率。
52 53 54
- 推理速度测试环境为 Qualcomm Snapdragon 865,采用arm8下4线程推理得到。

### Pipeline性能
J
JYChen 已提交
55 56 57 58 59 60 61 62
| 单人模型配置 | AP (COCO Val 单人) | 单人耗时 (FP32) |  单人耗时 (FP16) |
| :------------------------ | :------: | :---: | :---: |
| PicoDet-S-Pedestrian-192\*192 + PP-TinyPose-128\*96 | 51.8 | 11.72 ms| 8.18 ms |
| 其他优秀开源模型-192\*192 | 22.3 | 12.0 ms| - |

| 多人模型配置 | AP (COCO Val 多人) | 6人耗时 (FP32) | 6人耗时 (FP16)|
| :------------------------ | :-------: | :---: | :---: |
| PicoDet-S-Pedestrian-320\*320 + PP-TinyPose-128\*96 | 50.3 | 44.0 ms| 32.57 ms |
J
JYChen 已提交
63
| 其他优秀开源模型-256\*256 | 39.4 | 51.0 ms| - |
64 65

**说明**
J
JYChen 已提交
66
- 关键点检测模型的精度指标是基于对应行人检测模型检测得到的检测框。
67
- 精度测试中去除了flip操作,且检测置信度阈值要求0.5。
J
JYChen 已提交
68
- 精度测试中,为了公平比较,多人数据去除了6人以上(不含6人)的图像。
69 70
- 速度测试环境为qualcomm snapdragon 865,采用arm8下4线程、FP32推理得到。
- Pipeline速度包含模型的预处理、推理及后处理部分。
J
JYChen 已提交
71
- 其他优秀开源模型的测试及部署方案,请参考[这里](https://github.com/zhiboniu/MoveNet-PaddleLite)
72 73

## 模型训练
J
JYChen 已提交
74
关键点检测模型与行人检测模型的训练集在`COCO`以外还扩充了[AI Challenger](https://arxiv.org/abs/1711.06475)数据集,各数据集关键点定义如下:
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
```
COCO keypoint Description:
    0: "Nose",
    1: "Left Eye",
    2: "Right Eye",
    3: "Left Ear",
    4: "Right Ear",
    5: "Left Shoulder,
    6: "Right Shoulder",
    7: "Left Elbow",
    8: "Right Elbow",
    9: "Left Wrist",
    10: "Right Wrist",
    11: "Left Hip",
    12: "Right Hip",
    13: "Left Knee",
    14: "Right Knee",
    15: "Left Ankle",
    16: "Right Ankle"

AI Challenger Description:
    0: "Right Shoulder",
    1: "Right Elbow",
    2: "Right Wrist",
    3: "Left Shoulder",
    4: "Left Elbow",
    5: "Left Wrist",
    6: "Right Hip",
    7: "Right Knee",
    8: "Right Ankle",
    9: "Left Hip",
    10: "Left Knee",
    11: "Left Ankle",
    12: "Head top",
    13: "Neck"
```

J
JYChen 已提交
112
由于两个数据集的关键点标注形式不同,我们将两个数据集的标注进行了对齐,仍然沿用COCO的标注形式,您可以下载[训练的参考列表](https://bj.bcebos.com/v1/paddledet/data/keypoint/aic_coco_train_cocoformat.json)并放在`dataset/`下使用。对齐两个数据集标注文件的主要处理如下:
113 114 115 116 117
- `AI Challenger`关键点标注顺序调整至与COCO一致,统一是否标注/可见的标志位;
- 舍弃了`AI Challenger`中特有的点位;将`AI Challenger`数据中`COCO`特有点位标记为未标注;
- 重新排列了`image_id``annotation id`
利用转换为`COCO`形式的合并数据标注,执行模型训练:
```bash
J
JYChen 已提交
118
# 关键点检测模型
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
python3 -m paddle.distributed.launch tools/train.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml

# 行人检测模型
python3 -m paddle.distributed.launch tools/train.py -c configs/picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml
```

## 部署流程
### 实现部署预测
1. 通过以下命令将训练得到的模型导出:
```bash
python3 tools/export_model.py -c configs/picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml --output_dir=outut_inference -o weights=output/picodet_s_192_pedestrian/model_final

python3 tools/export_model.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml --output_dir=outut_inference -o weights=output/tinypose_128x96/model_final
```
导出后的模型如:
```
picodet_s_192_pedestrian
├── infer_cfg.yml
├── model.pdiparams
├── model.pdiparams.info
└── model.pdmodel
```
J
JYChen 已提交
141
您也可以直接下载模型库中提供的对应`预测部署模型`,分别获取得到行人检测模型和关键点检测模型的预测部署模型,解压即可。
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

2. 执行Python联合部署预测
```bash
# 预测一张图片
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --image_file={your image file} --device=GPU

# 预测多张图片
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --image_dir={dir of image file} --device=GPU

# 预测一个视频
python3 deploy/python/det_keypoint_unite_infer.py --det_model_dir=output_inference/picodet_s_320_pedestrian --keypoint_model_dir=output_inference/tinypose_128x96 --video_file={your video file} --device=GPU
```

3. 执行C++联合部署预测
- 请先按照[C++端预测部署](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/deploy/cpp),根据您的实际环境准备对应的`paddle_inference`库及相关依赖。
- 我们提供了[一键编译脚本](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.3/deploy/cpp/scripts/build.sh),您可以通过该脚本填写相关环境变量的位置,编译上述代码后,得到可执行文件。该过程中请保证`WITH_KEYPOINT=ON`.
- 编译完成后,即可执行部署预测,例如:
```bash
# 预测一张图片
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --image_file={your image file} --device=GPU

# 预测多张图片
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --image_dir={dir of image file} --device=GPU

# 预测一个视频
./build/main --model_dir=output_inference/picodet_s_320_pedestrian --model_dir_keypoint=output_inference/tinypose_128x96 --video_file={your video file} --device=GPU
```

### 实现移动端部署
#### 直接使用我们提供的模型进行部署
J
JYChen 已提交
172
1. 下载模型库中提供的`Paddle-Lite部署模型`,分别获取得到行人检测模型和关键点检测模型的`.nb`格式文件。
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
2. 准备Paddle-Lite运行环境, 可直接通过[PaddleLite预编译库下载](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html)获取预编译库,无需自行编译。如需要采用FP16推理,则需要下载[FP16的预编译库](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8_clang_c++_static_with_extra_with_cv_with_fp16.tiny_publish_427e46.zip)
3. 编译模型运行代码,详细步骤见[Paddle-Lite端侧部署](../../../deploy/lite/README.md)

#### 将训练的模型实现端侧部署
如果您希望将自己训练的模型应用于部署,可以参考以下步骤:
1. 将训练的模型导出
```bash
python3 tools/export_model.py -c configs/picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml --output_dir=outut_inference -o weights=output/picodet_s_192_pedestrian/model_final TestReader.fuse_normalize=true

python3 tools/export_model.py -c configs/keypoint/tiny_pose/tinypose_128x96.yml --output_dir=outut_inference -o weights=output/tinypose_128x96/model_final TestReader.fuse_normalize=true
```
2. 转换为Lite模型(依赖[Paddle-Lite](https://github.com/PaddlePaddle/Paddle-Lite))

- 安装Paddle-Lite:
```bash
pip install paddlelite
```
- 执行以下步骤,以得到对应后缀为`.nb`的Paddle-Lite模型用于端侧部署:
```
# 1. 转换行人检测模型
# FP32
paddle_lite_opt --model_dir=inference_model/picodet_s_192_pedestrian --valid_targets=arm --optimize_out=picodet_s_192_pedestrian_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/picodet_s_192_pedestrian --valid_targets=arm --optimize_out=picodet_s_192_pedestrian_fp16 --enable_fp16=true

J
JYChen 已提交
198
# 2. 转换关键点检测模型
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
# FP32
paddle_lite_opt --model_dir=inference_model/tinypose_128x96 --valid_targets=arm --optimize_out=tinypose_128x96_fp32
# FP16
paddle_lite_opt --model_dir=inference_model/tinypose_128x96 --valid_targets=arm --optimize_out=tinypose_128x96_fp16 --enable_fp16=true
```

3. 编译模型运行代码,详细步骤见[Paddle-Lite端侧部署](../../../deploy/lite/README.md)

我们已提供包含数据预处理、模型推理及模型后处理的[全流程示例代码](../../../deploy/lite/),可根据实际需求进行修改。

**注意**
- 在导出模型时增加`TestReader.fuse_normalize=true`参数,可以将对图像的Normalize操作合并在模型中执行,从而实现加速。
- FP16推理可实现更快的模型推理速度。若希望部署FP16模型,除模型转换步骤外,还需要编译支持FP16的Paddle-Lite预测库,详见[Paddle Lite 使用 ARM CPU 预测部署](https://paddle-lite.readthedocs.io/zh/latest/demo_guides/arm_cpu.html)

## 优化策略
TinyPose采用了以下策略来平衡模型的速度和精度表现:
- 轻量级的姿态估计任务骨干网络,[wider naive Lite-HRNet](https://arxiv.org/abs/2104.06403)
- 更小的输入尺寸。
- 加入Distribution-Aware coordinate Representation of Keypoints ([DARK](https://arxiv.org/abs/1910.06278)),以提升低分辨率热力图下模型的精度表现。
- Unbiased Data Processing ([UDP](https://arxiv.org/abs/1911.07524))。
- Augmentation by Information Dropping ([AID](https://arxiv.org/abs/2008.07139v2))。
- FP16 推理。