keypoint_vitpose.py 11.4 KB
Newer Older
L
LokeZhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. 
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. 
# You may obtain a copy of the License at 
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and 
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import numpy as np
import math
import cv2
from ppdet.core.workspace import register, create, serializable
from .meta_arch import BaseArch
from ..keypoint_utils import transform_preds
from .. import layers as L

__all__ = ['VitPose_TopDown', 'VitPosePostProcess']


@register
class VitPose_TopDown(BaseArch):
    __category__ = 'architecture'
    __inject__ = ['loss']

    def __init__(self, backbone, head, loss, post_process, flip_test):
        """
        VitPose network, see https://arxiv.org/pdf/2204.12484v2.pdf

        Args:
            backbone (nn.Layer): backbone instance
            post_process (object): `HRNetPostProcess` instance
            
        """
        super(VitPose_TopDown, self).__init__()
        self.backbone = backbone
        self.head = head
        self.loss = loss
        self.post_process = post_process
        self.flip_test = flip_test

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])
        #head
        head = create(cfg['head'])
        #post_process
        post_process = create(cfg['post_process'])

        return {
            'backbone': backbone,
            'head': head,
            'post_process': post_process
        }

    def _forward_train(self):

        feats = self.backbone.forward_features(self.inputs['image'])
        vitpost_output = self.head(feats)
        return self.loss(vitpost_output, self.inputs)

    def _forward_test(self):

        feats = self.backbone.forward_features(self.inputs['image'])
        output_heatmap = self.head(feats)

        if self.flip_test:
            img_flipped = self.inputs['image'].flip(3)
            features_flipped = self.backbone.forward_features(img_flipped)
            output_flipped_heatmap = self.head.inference_model(features_flipped,
                                                               self.flip_test)

            output_heatmap = (output_heatmap + output_flipped_heatmap) * 0.5

        imshape = (self.inputs['im_shape'].numpy()
                   )[:, ::-1] if 'im_shape' in self.inputs else None
        center = self.inputs['center'].numpy(
        ) if 'center' in self.inputs else np.round(imshape / 2.)
        scale = self.inputs['scale'].numpy(
        ) if 'scale' in self.inputs else imshape / 200.

        result = self.post_process(output_heatmap.cpu().numpy(), center, scale)

        return result

    def get_loss(self):
        return self._forward_train()

    def get_pred(self):
        res_lst = self._forward_test()
        outputs = {'keypoint': res_lst}
        return outputs


@register
@serializable
class VitPosePostProcess(object):
    def __init__(self, use_dark=False):
        self.use_dark = use_dark

    def get_max_preds(self, heatmaps):
        '''get predictions from score maps

        Args:
            heatmaps: numpy.ndarray([batch_size, num_joints, height, width])

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
            maxvals: numpy.ndarray([batch_size, num_joints, 2]), the maximum confidence of the keypoints
        '''
        assert isinstance(heatmaps,
                          np.ndarray), 'heatmaps should be numpy.ndarray'
        assert heatmaps.ndim == 4, 'batch_images should be 4-ndim'

        batch_size = heatmaps.shape[0]
        num_joints = heatmaps.shape[1]
        width = heatmaps.shape[3]
        heatmaps_reshaped = heatmaps.reshape((batch_size, num_joints, -1))
        idx = np.argmax(heatmaps_reshaped, 2)
        maxvals = np.amax(heatmaps_reshaped, 2)

        maxvals = maxvals.reshape((batch_size, num_joints, 1))
        idx = idx.reshape((batch_size, num_joints, 1))

        preds = np.tile(idx, (1, 1, 2)).astype(np.float32)

        preds[:, :, 0] = (preds[:, :, 0]) % width
        preds[:, :, 1] = np.floor((preds[:, :, 1]) // width)

        pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
        pred_mask = pred_mask.astype(np.float32)

        preds *= pred_mask

        return preds, maxvals

    def post_datk_udp(self, coords, batch_heatmaps, kernel=3):
        """DARK post-pocessing. Implemented by udp. Paper ref: Huang et al. The
        Devil is in the Details: Delving into Unbiased Data Processing for Human
        Pose Estimation (CVPR 2020). Zhang et al. Distribution-Aware Coordinate
        Representation for Human Pose Estimation (CVPR 2020).

        Note:
            - batch size: B
            - num keypoints: K
            - num persons: N
            - height of heatmaps: H
            - width of heatmaps: W

            B=1 for bottom_up paradigm where all persons share the same heatmap.
            B=N for top_down paradigm where each person has its own heatmaps.

        Args:
            coords (np.ndarray[N, K, 2]): Initial coordinates of human pose.
            batch_heatmaps (np.ndarray[B, K, H, W]): batch_heatmaps
            kernel (int): Gaussian kernel size (K) for modulation.

        Returns:
            np.ndarray([N, K, 2]): Refined coordinates.
        """
        if not isinstance(batch_heatmaps, np.ndarray):
            batch_heatmaps = batch_heatmaps.cpu().numpy()
        B, K, H, W = batch_heatmaps.shape
        N = coords.shape[0]
        assert (B == 1 or B == N)
        for heatmaps in batch_heatmaps:
            for heatmap in heatmaps:
                cv2.GaussianBlur(heatmap, (kernel, kernel), 0, heatmap)
        np.clip(batch_heatmaps, 0.001, 50, batch_heatmaps)
        np.log(batch_heatmaps, batch_heatmaps)

        batch_heatmaps_pad = np.pad(batch_heatmaps, ((0, 0), (0, 0), (1, 1),
                                                     (1, 1)),
                                    mode='edge').flatten()

        index = coords[..., 0] + 1 + (coords[..., 1] + 1) * (W + 2)
        index += (W + 2) * (H + 2) * np.arange(0, B * K).reshape(-1, K)
        index = index.astype(int).reshape(-1, 1)
        i_ = batch_heatmaps_pad[index]
        ix1 = batch_heatmaps_pad[index + 1]
        iy1 = batch_heatmaps_pad[index + W + 2]
        ix1y1 = batch_heatmaps_pad[index + W + 3]
        ix1_y1_ = batch_heatmaps_pad[index - W - 3]
        ix1_ = batch_heatmaps_pad[index - 1]
        iy1_ = batch_heatmaps_pad[index - 2 - W]

        dx = 0.5 * (ix1 - ix1_)
        dy = 0.5 * (iy1 - iy1_)
        derivative = np.concatenate([dx, dy], axis=1)
        derivative = derivative.reshape(N, K, 2, 1)
        dxx = ix1 - 2 * i_ + ix1_
        dyy = iy1 - 2 * i_ + iy1_
        dxy = 0.5 * (ix1y1 - ix1 - iy1 + i_ + i_ - ix1_ - iy1_ + ix1_y1_)
        hessian = np.concatenate([dxx, dxy, dxy, dyy], axis=1)
        hessian = hessian.reshape(N, K, 2, 2)
        hessian = np.linalg.inv(hessian + np.finfo(np.float32).eps * np.eye(2))
        coords -= np.einsum('ijmn,ijnk->ijmk', hessian, derivative).squeeze()
        return coords

    def transform_preds_udp(self,
                            coords,
                            center,
                            scale,
                            output_size,
                            use_udp=True):
        """Get final keypoint predictions from heatmaps and apply scaling and
        translation to map them back to the image.

        Note:
            num_keypoints: K

        Args:
            coords (np.ndarray[K, ndims]):

                * If ndims=2, corrds are predicted keypoint location.
                * If ndims=4, corrds are composed of (x, y, scores, tags)
                * If ndims=5, corrds are composed of (x, y, scores, tags,
                flipped_tags)

            center (np.ndarray[2, ]): Center of the bounding box (x, y).
            scale (np.ndarray[2, ]): Scale of the bounding box
                wrt [width, height].
            output_size (np.ndarray[2, ] | list(2,)): Size of the
                destination heatmaps.
            use_udp (bool): Use unbiased data processing

        Returns:
            np.ndarray: Predicted coordinates in the images.
        """

        assert coords.shape[1] in (2, 4, 5)
        assert len(center) == 2
        assert len(scale) == 2
        assert len(output_size) == 2

        # Recover the scale which is normalized by a factor of 200.
        scale = scale * 200.0

        if use_udp:
            scale_x = scale[0] / (output_size[0] - 1.0)
            scale_y = scale[1] / (output_size[1] - 1.0)
        else:
            scale_x = scale[0] / output_size[0]
            scale_y = scale[1] / output_size[1]

        target_coords = np.ones_like(coords)
        target_coords[:, 0] = coords[:, 0] * scale_x + center[0] - scale[
            0] * 0.5
        target_coords[:, 1] = coords[:, 1] * scale_y + center[1] - scale[
            1] * 0.5

        return target_coords

    def get_final_preds(self, heatmaps, center, scale, kernelsize=11):
        """the highest heatvalue location with a quarter offset in the
        direction from the highest response to the second highest response.

        Args:
            heatmaps (numpy.ndarray): The predicted heatmaps
            center (numpy.ndarray): The boxes center
            scale (numpy.ndarray): The scale factor

        Returns:
            preds: numpy.ndarray([batch_size, num_joints, 2]), keypoints coords
            maxvals: numpy.ndarray([batch_size, num_joints, 1]), the maximum confidence of the keypoints
        """
        coords, maxvals = self.get_max_preds(heatmaps)

        N, K, H, W = heatmaps.shape

        if self.use_dark:
            coords = self.post_datk_udp(coords, heatmaps, kernelsize)
            preds = coords.copy()
            # Transform back to the image
            for i in range(N):
                preds[i] = self.transform_preds_udp(preds[i], center[i],
                                                    scale[i], [W, H])
        else:
            for n in range(coords.shape[0]):
                for p in range(coords.shape[1]):
                    hm = heatmaps[n][p]
                    px = int(math.floor(coords[n][p][0] + 0.5))
                    py = int(math.floor(coords[n][p][1] + 0.5))
                    if 1 < px < W - 1 and 1 < py < H - 1:
                        diff = np.array([
                            hm[py][px + 1] - hm[py][px - 1],
                            hm[py + 1][px] - hm[py - 1][px]
                        ])
                        coords[n][p] += np.sign(diff) * .25
            preds = coords.copy()

            # Transform back
            for i in range(coords.shape[0]):
                preds[i] = transform_preds(coords[i], center[i], scale[i],
                                           [W, H])

        return preds, maxvals

    def __call__(self, output, center, scale):
        preds, maxvals = self.get_final_preds(output, center, scale)
        outputs = [[
            np.concatenate(
                (preds, maxvals), axis=-1), np.mean(
                    maxvals, axis=1)
        ]]
        return outputs