slice_op.h 4.8 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
17
#include <utility>
W
whs 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SliceKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int rank = ctx.Input<framework::Tensor>("Input")->dims().size();
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto in = context.Input<framework::Tensor>("Input");
    auto out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    auto out_dims = out->dims();
    auto in_dims = in->dims();
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");

    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    auto in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *in);
    auto out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *out);
    out_t.device(place) = in_t.slice(offsets, extents);
  }
};
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

template <typename DeviceContext, typename T>
class SliceGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    size_t rank = ctx.Input<framework::Tensor>(framework::GradVarName("Out"))
                      ->dims()
                      .size();
    switch (rank) {
      case 1:
        SliceCompute<1>(ctx);
        break;
      case 2:
        SliceCompute<2>(ctx);
        break;
      case 3:
        SliceCompute<3>(ctx);
        break;
      case 4:
        SliceCompute<4>(ctx);
        break;
      case 5:
        SliceCompute<5>(ctx);
        break;
      case 6:
        SliceCompute<6>(ctx);
        break;
    }
  }

 private:
  template <size_t D>
  void SliceCompute(const framework::ExecutionContext& context) const {
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_input =
        context.Output<framework::Tensor>(framework::GradVarName("Input"));
    d_input->mutable_data<T>(context.GetPlace());
    auto out_dims = d_out->dims();
    auto in_dims = d_input->dims();
    auto axes = context.Attr<std::vector<int>>("axes");
    auto starts = context.Attr<std::vector<int>>("starts");

    auto offsets = Eigen::array<int, D>();
    auto extents = Eigen::array<int, D>();
    for (size_t i = 0; i < D; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    int start;
    for (size_t i = 0; i < axes.size(); ++i) {
      start = starts[i];
      if (start < 0) {
        start = (start + in_dims[axes[i]]);
      }
      start = std::max(start, 0);
      offsets[axes[i]] = start;
    }
    Eigen::array<std::pair<int, int>, D> paddings;
    for (size_t i = 0; i < paddings.size(); ++i) {
      paddings[i].first = offsets[i];
      paddings[i].second = (in_dims[i] - out_dims[i]) - offsets[i];
    }
    auto d_in_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_input);
    auto d_out_t =
        framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
            *d_out);
    d_in_t.device(place) = d_out_t.pad(paddings, 0);
  }
};
W
whs 已提交
162 163
}  // namespace operators
}  // namespace paddle