resnet_with_preprocess.py 9.6 KB
Newer Older
W
Wu Yi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import functools
import numpy as np
import time
import os

import cProfile, pstats, StringIO

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.profiler as profiler
# from recordio_converter import imagenet_train, imagenet_test
from imagenet_reader import train_raw, val


def conv_bn_layer(input,
                  ch_out,
                  filter_size,
                  stride,
                  padding,
                  act='relu',
                  is_train=True):
    conv1 = fluid.layers.conv2d(
        input=input,
        filter_size=filter_size,
        num_filters=ch_out,
        stride=stride,
        padding=padding,
        act=None,
        bias_attr=False)
    return fluid.layers.batch_norm(input=conv1, act=act, is_test=not is_train)


def shortcut(input, ch_out, stride, is_train=True):
    ch_in = input.shape[1]  # if args.data_format == 'NCHW' else input.shape[-1]
    if ch_in != ch_out:
        return conv_bn_layer(
            input, ch_out, 1, stride, 0, None, is_train=is_train)
    else:
        return input


def basicblock(input, ch_out, stride, is_train=True):
    short = shortcut(input, ch_out, stride, is_train=is_train)
    conv1 = conv_bn_layer(input, ch_out, 3, stride, 1, is_train=is_train)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, act=None, is_train=is_train)
    return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')


def bottleneck(input, ch_out, stride, is_train=True):
    short = shortcut(input, ch_out * 4, stride, is_train=is_train)
    conv1 = conv_bn_layer(input, ch_out, 1, stride, 0, is_train=is_train)
    conv2 = conv_bn_layer(conv1, ch_out, 3, 1, 1, is_train=is_train)
    conv3 = conv_bn_layer(
        conv2, ch_out * 4, 1, 1, 0, act=None, is_train=is_train)
    return fluid.layers.elementwise_add(x=short, y=conv3, act='relu')


def layer_warp(block_func, input, ch_out, count, stride):
    res_out = block_func(input, ch_out, stride)
    for i in range(1, count):
        res_out = block_func(res_out, ch_out, 1)
    return res_out


def resnet_imagenet(input,
                    class_dim,
                    depth=50,
                    data_format='NCHW',
                    is_train=True):

    cfg = {
        18: ([2, 2, 2, 1], basicblock),
        34: ([3, 4, 6, 3], basicblock),
        50: ([3, 4, 6, 3], bottleneck),
        101: ([3, 4, 23, 3], bottleneck),
        152: ([3, 8, 36, 3], bottleneck)
    }
    stages, block_func = cfg[depth]
    conv1 = conv_bn_layer(input, ch_out=64, filter_size=7, stride=2, padding=3)
    pool1 = fluid.layers.pool2d(
        input=conv1, pool_type='avg', pool_size=3, pool_stride=2)
    res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
    res2 = layer_warp(block_func, res1, 128, stages[1], 2)
    res3 = layer_warp(block_func, res2, 256, stages[2], 2)
    res4 = layer_warp(block_func, res3, 512, stages[3], 2)
    pool2 = fluid.layers.pool2d(
        input=res4,
        pool_size=7,
        pool_type='avg',
        pool_stride=1,
        global_pooling=True)
    out = fluid.layers.fc(input=pool2, size=class_dim, act='softmax')
    return out


def resnet_cifar10(input, class_dim, depth=32, data_format='NCHW'):
    assert (depth - 2) % 6 == 0

    n = (depth - 2) // 6

    conv1 = conv_bn_layer(
        input=input, ch_out=16, filter_size=3, stride=1, padding=1)
    res1 = layer_warp(basicblock, conv1, 16, n, 1)
    res2 = layer_warp(basicblock, res1, 32, n, 2)
    res3 = layer_warp(basicblock, res2, 64, n, 2)
    pool = fluid.layers.pool2d(
        input=res3, pool_size=8, pool_type='avg', pool_stride=1)
    out = fluid.layers.fc(input=pool, size=class_dim, act='softmax')
    return out


def _model_reader_dshape_classdim(args, is_train):
    model = resnet_cifar10
    reader = None
    if args.data_set == "cifar10":
        class_dim = 10
        if args.data_format == 'NCHW':
            dshape = [3, 32, 32]
        else:
            dshape = [32, 32, 3]
        model = resnet_cifar10
        if is_train:
            reader = paddle.dataset.cifar.train10()
        else:
            reader = paddle.dataset.cifar.test10()
    elif args.data_set == "flowers":
        class_dim = 102
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
        model = resnet_imagenet
        if is_train:
            reader = paddle.dataset.flowers.train()
        else:
            reader = paddle.dataset.flowers.test()
    elif args.data_set == "imagenet":
        class_dim = 1000
        if args.data_format == 'NCHW':
            dshape = [3, 224, 224]
        else:
            dshape = [224, 224, 3]
        model = resnet_imagenet
        if not args.data_path:
            raise Exception(
                "Must specify --data_path when training with imagenet")
        if not args.use_reader_op:
            if is_train:
                reader = train_raw()
            else:
                reader = val()
        else:
            if is_train:
                reader = train_raw()
            else:
                reader = val(xmap=False)
    return model, reader, dshape, class_dim


def get_model(args, is_train, main_prog, startup_prog):
    model, reader, dshape, class_dim = _model_reader_dshape_classdim(args,
                                                                     is_train)

    pyreader = None
    trainer_count = int(os.getenv("PADDLE_TRAINERS"))
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            if args.use_reader_op:
                pyreader = fluid.layers.py_reader(
                    capacity=args.batch_size * args.gpus,
                    shapes=([-1] + dshape, (-1, 1)),
                    dtypes=('uint8', 'int64'),
                    name="train_reader" if is_train else "test_reader",
                    use_double_buffer=True)
                input, label = fluid.layers.read_file(pyreader)
            else:
                input = fluid.layers.data(
                    name='data', shape=dshape, dtype='uint8')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')

            # add imagenet preprocessors
            random_crop = fluid.layers.random_crop(input, dshape)
            casted = fluid.layers.cast(random_crop, 'float32')
            # input is HWC
            trans = fluid.layers.transpose(casted, [0, 3, 1, 2]) / 255.0
            img_mean = fluid.layers.tensor.assign(
                np.array([0.485, 0.456, 0.406]).astype('float32').reshape((3, 1,
                                                                           1)))
            img_std = fluid.layers.tensor.assign(
                np.array([0.229, 0.224, 0.225]).astype('float32').reshape((3, 1,
                                                                           1)))
            h1 = fluid.layers.elementwise_sub(trans, img_mean, axis=1)
            h2 = fluid.layers.elementwise_div(h1, img_std, axis=1)

            # pre_out = (trans - img_mean) / img_std

            predict = model(h2, class_dim, is_train=is_train)
            cost = fluid.layers.cross_entropy(input=predict, label=label)
            avg_cost = fluid.layers.mean(x=cost)

            batch_acc1 = fluid.layers.accuracy(input=predict, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=predict, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:
                if args.use_lars:
                    lars_decay = 1.0
                else:
                    lars_decay = 0.0

                total_images = 1281167 / trainer_count

                step = int(total_images / args.batch_size + 1)
                epochs = [30, 60, 80, 90]
                bd = [step * e for e in epochs]
                base_lr = args.learning_rate
                lr = []
                lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
                optimizer = fluid.optimizer.Momentum(
                    learning_rate=base_lr,
                    #learning_rate=fluid.layers.piecewise_decay(
                    #    boundaries=bd, values=lr),
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))
                optimizer.minimize(avg_cost)

                if args.memory_optimize:
                    fluid.memory_optimize(main_prog)

    # config readers
    if not args.use_reader_op:
        batched_reader = paddle.batch(
            reader if args.no_random else paddle.reader.shuffle(
                reader, buf_size=5120),
            batch_size=args.batch_size * args.gpus,
            drop_last=True)
    else:
        batched_reader = None
        pyreader.decorate_paddle_reader(
            paddle.batch(
                # reader if args.no_random else paddle.reader.shuffle(
                #     reader, buf_size=5120),
                reader,
                batch_size=args.batch_size))

    return avg_cost, optimizer, [batch_acc1,
                                 batch_acc5], batched_reader, pyreader