ttf_head.py 7.2 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Constant, Uniform, Normal
from paddle.regularizer import L2Decay
from ppdet.core.workspace import register
import numpy as np


@register
class HMHead(nn.Layer):

    __shared__ = ['num_classes']

    def __init__(self, ch_in, ch_out=128, num_classes=80, conv_num=2):
        super(HMHead, self).__init__()
        head_conv = nn.Sequential()
        for i in range(conv_num):
            name = 'conv.{}'.format(i)
            head_conv.add_sublayer(
                name,
                nn.Conv2D(
                    in_channels=ch_in if i == 0 else ch_out,
                    out_channels=ch_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            head_conv.add_sublayer(name + '.act', nn.ReLU())
        self.feat = self.add_sublayer('hm_feat', head_conv)
        bias_init = float(-np.log((1 - 0.01) / 0.01))
        self.head = self.add_sublayer(
            'hm_head',
            nn.Conv2D(
                in_channels=ch_out,
                out_channels=num_classes,
                kernel_size=1,
                weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
                bias_attr=ParamAttr(
                    learning_rate=2.,
                    regularizer=L2Decay(0.),
                    initializer=Constant(bias_init))))

    def forward(self, feat):
        out = self.feat(feat)
        out = self.head(out)
        return out


@register
class WHHead(nn.Layer):
    def __init__(self, ch_in, ch_out=64, conv_num=2):
        super(WHHead, self).__init__()
        head_conv = nn.Sequential()
        for i in range(conv_num):
            name = 'conv.{}'.format(i)
            head_conv.add_sublayer(
                name,
                nn.Conv2D(
                    in_channels=ch_in if i == 0 else ch_out,
                    out_channels=ch_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0, 0.001)),
                    bias_attr=ParamAttr(
                        learning_rate=2., regularizer=L2Decay(0.))))
            head_conv.add_sublayer(name + '.act', nn.ReLU())
        self.feat = self.add_sublayer('wh_feat', head_conv)
        self.head = self.add_sublayer(
            'wh_head',
            nn.Conv2D(
                in_channels=ch_out,
                out_channels=4,
                kernel_size=1,
                weight_attr=ParamAttr(initializer=Normal(0, 0.001)),
                bias_attr=ParamAttr(
                    learning_rate=2., regularizer=L2Decay(0.))))

    def forward(self, feat):
        out = self.feat(feat)
        out = self.head(out)
        out = F.relu(out)
        return out


@register
class TTFHead(nn.Layer):
    """
    TTFHead
    Args:
107 108 109 110 111 112
        in_channels(int): the channel number of input to TTFHead. 
        num_classes(int): the number of classes, 80 by default.
        hm_head_planes(int): the channel number in wh head, 128 by default.
        wh_head_planes(int): the channel number in wh head, 64 by default.
        hm_head_conv_num(int): the number of convolution in wh head, 2 by default.
        wh_head_conv_num(int): the number of convolution in wh head, 2 by default.
F
Feng Ni 已提交
113 114 115
        hm_loss(object): Instance of 'CTFocalLoss'.
        wh_loss(object): Instance of 'GIoULoss'.
        wh_offset_base(flaot): the base offset of width and height, 16. by default.
116 117
        down_ratio(int): the actual down_ratio is calculated by base_down_ratio(default 16) 
            and the number of upsample layers.
F
Feng Ni 已提交
118 119
    """

120 121
    __shared__ = ['num_classes', 'down_ratio']
    __inject__ = ['hm_loss', 'wh_loss']
F
Feng Ni 已提交
122 123

    def __init__(self,
124 125 126 127 128 129
                 in_channels,
                 num_classes=80,
                 hm_head_planes=128,
                 wh_head_planes=64,
                 hm_head_conv_num=2,
                 wh_head_conv_num=2,
F
Feng Ni 已提交
130 131 132 133 134
                 hm_loss='CTFocalLoss',
                 wh_loss='GIoULoss',
                 wh_offset_base=16.,
                 down_ratio=4):
        super(TTFHead, self).__init__()
135 136 137 138
        self.in_channels = in_channels
        self.hm_head = HMHead(in_channels, hm_head_planes, num_classes,
                              hm_head_conv_num)
        self.wh_head = WHHead(in_channels, wh_head_planes, wh_head_conv_num)
F
Feng Ni 已提交
139 140 141 142 143 144
        self.hm_loss = hm_loss
        self.wh_loss = wh_loss

        self.wh_offset_base = wh_offset_base
        self.down_ratio = down_ratio

145 146 147 148 149 150
    @classmethod
    def from_config(cls, cfg, input_shape):
        if isinstance(input_shape, (list, tuple)):
            input_shape = input_shape[0]
        return {'in_channels': input_shape.channels, }

F
Feng Ni 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def forward(self, feats):
        hm = self.hm_head(feats)
        wh = self.wh_head(feats) * self.wh_offset_base
        return hm, wh

    def filter_box_by_weight(self, pred, target, weight):
        index = paddle.nonzero(weight > 0)
        index.stop_gradient = True
        weight = paddle.gather_nd(weight, index)
        pred = paddle.gather_nd(pred, index)
        target = paddle.gather_nd(target, index)
        return pred, target, weight

    def get_loss(self, pred_hm, pred_wh, target_hm, box_target, target_weight):
        pred_hm = paddle.clip(F.sigmoid(pred_hm), 1e-4, 1 - 1e-4)
        hm_loss = self.hm_loss(pred_hm, target_hm)
        H, W = target_hm.shape[2:]
        mask = paddle.reshape(target_weight, [-1, H, W])
        avg_factor = paddle.sum(mask) + 1e-4

        base_step = self.down_ratio
        shifts_x = paddle.arange(0, W * base_step, base_step, dtype='int32')
        shifts_y = paddle.arange(0, H * base_step, base_step, dtype='int32')
        shift_y, shift_x = paddle.tensor.meshgrid([shifts_y, shifts_x])
        base_loc = paddle.stack([shift_x, shift_y], axis=0)
        base_loc.stop_gradient = True

        pred_boxes = paddle.concat(
            [0 - pred_wh[:, 0:2, :, :] + base_loc, pred_wh[:, 2:4] + base_loc],
            axis=1)
        pred_boxes = paddle.transpose(pred_boxes, [0, 2, 3, 1])
        boxes = paddle.transpose(box_target, [0, 2, 3, 1])
        boxes.stop_gradient = True

        pred_boxes, boxes, mask = self.filter_box_by_weight(pred_boxes, boxes,
                                                            mask)
        mask.stop_gradient = True
        wh_loss = self.wh_loss(pred_boxes, boxes, iou_weight=mask.unsqueeze(1))
        wh_loss = wh_loss / avg_factor

        ttf_loss = {'hm_loss': hm_loss, 'wh_loss': wh_loss}
        return ttf_loss