picodet_postprocess.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
G
Guanghua Yu 已提交
14 15 16
//
// The code is based on:
// https://github.com/RangiLyu/nanodet/blob/main/demo_mnn/nanodet_mnn.cpp
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

#include "include/picodet_postprocess.h"

namespace PaddleDetection {

float fast_exp(float x) {
    union {
        uint32_t i;
        float f;
    } v{};
    v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
    return v.f;
}

template <typename _Tp>
int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
    const _Tp alpha = *std::max_element(src, src + length);
    _Tp denominator{0};

    for (int i = 0; i < length; ++i) {
        dst[i] = fast_exp(src[i] - alpha);
        denominator += dst[i];
    }

    for (int i = 0; i < length; ++i) {
        dst[i] /= denominator;
    }

    return 0;
}

// PicoDet decode
PaddleDetection::ObjectResult disPred2Bbox(const float *&dfl_det, int label, float score,
                      int x, int y, int stride, std::vector<float> im_shape,
                      int reg_max) {
    float ct_x = (x + 0.5) * stride;
    float ct_y = (y + 0.5) * stride;
    std::vector<float> dis_pred;
    dis_pred.resize(4);
    for (int i = 0; i < 4; i++) {
      float dis = 0;
      float* dis_after_sm = new float[reg_max + 1];
      activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm, reg_max + 1);
      for (int j = 0; j < reg_max + 1; j++) {
          dis += j * dis_after_sm[j];
      }
      dis *= stride;
      dis_pred[i] = dis;
      delete[] dis_after_sm;
    }
    int xmin = (int)(std::max)(ct_x - dis_pred[0], .0f);
    int ymin = (int)(std::max)(ct_y - dis_pred[1], .0f);
    int xmax = (int)(std::min)(ct_x + dis_pred[2], (float)im_shape[0]);
    int ymax = (int)(std::min)(ct_y + dis_pred[3], (float)im_shape[1]);

    PaddleDetection::ObjectResult result_item;
    result_item.rect = {xmin, ymin, xmax, ymax};
    result_item.class_id = label;
    result_item.confidence = score;

    return result_item;
}


void PicoDetPostProcess(std::vector<PaddleDetection::ObjectResult>* results,
                         std::vector<const float *> outs,
                         std::vector<int> fpn_stride,
                         std::vector<float> im_shape,
                         std::vector<float> scale_factor,
                         float score_threshold,
                         float nms_threshold,
                         int num_class,
                         int reg_max) {
  std::vector<std::vector<PaddleDetection::ObjectResult>> bbox_results;
  bbox_results.resize(num_class);
  int in_h = im_shape[0], in_w = im_shape[1];
  for (int i = 0; i < fpn_stride.size(); ++i) {
    int feature_h = in_h / fpn_stride[i];
    int feature_w = in_w / fpn_stride[i];
    for (int idx = 0; idx < feature_h * feature_w; idx++) {
      const float *scores = outs[i] + (idx * num_class);

      int row = idx / feature_w;
      int col = idx % feature_w;
      float score = 0;
      int cur_label = 0;
      for (int label = 0; label < num_class; label++) {
        if (scores[label] > score) {
          score = scores[label];
          cur_label = label;
        }
      }
      if (score > score_threshold) {
        const float *bbox_pred = outs[i + fpn_stride.size()]
              + (idx * 4 * (reg_max + 1));
        bbox_results[cur_label].push_back(disPred2Bbox(bbox_pred, 
              cur_label, score, col, row, fpn_stride[i], im_shape, reg_max));
      }
    }
  }
  for (int i = 0; i < (int)bbox_results.size(); i++) {
    PaddleDetection::nms(bbox_results[i], nms_threshold);

    for (auto box : bbox_results[i]) {
        box.rect[0] = box.rect[0] / scale_factor[1];
        box.rect[2] = box.rect[2] / scale_factor[1];
        box.rect[1] = box.rect[1] / scale_factor[0];
        box.rect[3] = box.rect[3] / scale_factor[0];
        results->push_back(box);
    }
  }
}

G
Guanghua Yu 已提交
130
}  // namespace PaddleDetection