layer.cc 7.4 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
X
Xin Pan 已提交
16 17 18 19 20 21 22 23 24
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/string/printf.h"
X
Xin Pan 已提交
25 26

namespace paddle {
X
Xin Pan 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
namespace imperative {

using framework::Variable;

void AddTo(Variable* src, Variable* dst) {
  framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld",
                 dst_tensor->numel(), src_tensor->numel());
  float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
  const float* src_data = src_tensor->data<float>();
  for (size_t i = 0; i < src_tensor->numel(); ++i) {
    dst_data[i] += src_data[i];
  }
}

class Autograd {
 public:
  explicit Autograd(framework::Scope* scope) : scope_(scope) {}

X
polish  
Xin Pan 已提交
47
  void RunBackward(VarBase* var) {
X
Xin Pan 已提交
48
    PADDLE_ENFORCE(var->pre_op_->op_desc_);
49 50
    // TODO(panyx0718): Only create for vars that "require_grad"
    (*var->pre_op_->output_vars_)[var->pre_op_out_idx_]->grads_ = var->grads_;
X
Xin Pan 已提交
51

52 53
    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);
X
Xin Pan 已提交
54 55 56 57

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
58
      OpBase* ready_op = ready.front();
X
Xin Pan 已提交
59 60 61 62 63 64 65 66 67 68 69 70
      ready.pop_front();
      std::vector<Variable*> input_grads = ready_op->ApplyGrad(scope_);

      for (size_t i = 0; i < input_grads.size(); ++i) {
        if (!input_grads[i]) continue;
        OpBase* pre_op = ready_op->pre_ops_->at(i);
        if (!pre_op) continue;

        dep_counts[pre_op] -= 1;
        PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
        bool pre_op_ready = dep_counts[pre_op] == 0;
        if (pre_op_ready) {
71
          ready.push_back(pre_op);
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
      for (OpBase* pre_op : *(candidate->pre_ops_)) {
        if (!pre_op) continue;
        if (visited.find(pre_op) == visited.end()) {
          visited.insert(pre_op);
          queue.push_back(pre_op);
        }
        ret[pre_op] += 1;
      }
    }

    return ret;
  }

  framework::Scope* scope_;
};

framework::Variable* CreateVariable(const std::string& name,
                                    const framework::DDim& dim, float val,
                                    framework::Scope* scope,
                                    bool random_name = true) {
  std::string varname = name;
  if (random_name) {
    std::mt19937 rng;
    rng.seed(std::random_device()());
    std::uniform_int_distribution<std::mt19937::result_type> dist6(
        1, std::numeric_limits<int>::max());
    int id = dist6(rng);
    varname = string::Sprintf("%s@%d", varname, id);
  }

X
polish  
Xin Pan 已提交
118
  VLOG(3) << "creating var " << varname;
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  framework::Variable* var = scope->Var(varname);
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  float* data = tensor->mutable_data<float>(dim, platform::CPUPlace());
  std::fill(data, data + tensor->numel(), val);
  return var;
}

framework::LoDTensor& VarBase::Grad() {
  VLOG(3) << "get var grad " << var_desc_->Name();
  return *grads_->GetMutable<framework::LoDTensor>();
}

void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
  VLOG(3) << "apply var grad " << var_desc_->Name() << " "
          << grad->Get<framework::LoDTensor>().data<float>()[0];
  if (!grads_) {
    grads_ =
        CreateVariable(string::Sprintf("%s@IGrad", var_desc_->Name()),
                       var_->Get<framework::LoDTensor>().dims(), 0.0, scope);
  }
  AddTo(grad, grads_);
  VLOG(3) << "grad_ after apply var grad " << var_desc_->Name() << " "
          << grads_->Get<framework::LoDTensor>().data<float>()[0];
}

std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
  VLOG(3) << "op grad " << grad_op_desc_->Type();

148 149
  for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) {
    if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) {
X
polish  
Xin Pan 已提交
150
      // grad op inputs can be forward inputs, so not in grad_to_var.
151 152
      continue;
    }
X
polish  
Xin Pan 已提交
153
    VLOG(3) << "op grad in var " << grad_invar;
154 155 156 157
    block_->FindRecursiveOrCreateVar(grad_invar);
    framework::Variable* var = scope->Var(grad_invar);
    const std::string& invar = grad_to_var_->at(grad_invar);
    for (VarBase* varbase : *output_vars_) {
X
polish  
Xin Pan 已提交
158
      // Use the accumulated grads_ by sharing the input with grads_.
159 160 161
      if (varbase->var_desc_->Name() == invar) {
        var->GetMutable<framework::LoDTensor>()->ShareDataWith(
            varbase->grads_->Get<framework::LoDTensor>());
X
polish  
Xin Pan 已提交
162
        break;
X
Xin Pan 已提交
163 164 165 166 167
      }
    }
  }

  for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
X
polish  
Xin Pan 已提交
168
    VLOG(3) << "grad outvar " << outvar;
X
Xin Pan 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    block_->FindRecursiveOrCreateVar(outvar);
    framework::Variable* var = scope->Var(outvar);
    if (!var->IsInitialized()) {
      framework::VarDesc* var_desc = block_->FindVar(outvar);
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        var->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
    }
  }
  grad_op_desc_->InferShape(*block_);
  grad_op_desc_->InferVarType(block_);
  std::unique_ptr<framework::OperatorBase> opbase =
      framework::OpRegistry::CreateOp(*grad_op_desc_);

  opbase->Run(*scope, platform::CPUPlace());

X
polish  
Xin Pan 已提交
187
  // `ret` matches exactly with `input_vars_` of forward op.
188 189 190 191 192 193 194 195
  std::vector<Variable*> ret;
  for (size_t i = 0; i < input_vars_->size(); ++i) {
    bool found = false;
    for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
      Variable* var = scope->FindVar(outvar);
      VarBase* origin_var = (*input_vars_)[i];
      std::string orig_var = grad_to_var_->at(outvar);
      PADDLE_ENFORCE(origin_var->var_desc_->Name() == orig_var);
X
polish  
Xin Pan 已提交
196
      VLOG(3) << "apply grad " << outvar << " with origin " << orig_var;
197 198 199 200 201 202 203 204 205 206
      origin_var->ApplyGrad(scope, var);
      found = true;
      ret.push_back(var);
      // TODO(panyx0718): There might be another outvar with the same name.
      // In that case, it doesn't matter the first one or the second one is
      // used.
      break;
    }
    if (!found) {
      ret.push_back(nullptr);
X
Xin Pan 已提交
207 208 209 210 211 212
    }
  }
  return ret;
}

void VarBase::RunBackward(framework::Scope* scope) {
X
polish  
Xin Pan 已提交
213
  grads_ = CreateVariable(framework::GradVarName(var_desc_->Name()),
X
Xin Pan 已提交
214 215
                          var_->Get<framework::LoDTensor>().dims(), 1.0, scope,
                          false);
X
polish  
Xin Pan 已提交
216 217
  if (!pre_op_) return;
  Autograd(scope).RunBackward(this);
X
Xin Pan 已提交
218 219 220
}

}  // namespace imperative
X
Xin Pan 已提交
221
}  // namespace paddle