TestUtil.cpp 7.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "TestUtil.h"
#include <gflags/gflags.h>
#include "paddle/math/SparseMatrix.h"

DEFINE_int32(fixed_seq_length, 0, "Produce some sequence of fixed length");

namespace paddle {

std::string randStr(const int len) {
  std::string str =
      "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  std::string s = "";
  for (int i = 0; i < len; ++i) s += str[(rand() % 62)];  // NOLINT
  return s;
}

MatrixPtr makeRandomSparseMatrix(size_t height,
                                 size_t width,
                                 bool withValue,
                                 bool useGpu,
                                 bool equalNnzPerSample) {
H
hedaoyuan 已提交
36
#ifndef PADDLE_MOBILE_INFERENCE
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
  std::vector<int64_t> ids(height);
  std::vector<int64_t> indices(height + 1);
  indices[0] = 0;

  std::function<size_t()> randomer = [] { return uniformRandom(10); };
  if (equalNnzPerSample) {
    size_t n = 0;
    do {
      n = uniformRandom(10);
    } while (!n);
    randomer = [=] { return n; };
  }
  for (size_t i = 0; i < height; ++i) {
    indices[i + 1] = indices[i] + std::min(randomer(), width);
    ids[i] = i;
  }

  if (!withValue) {
    std::vector<sparse_non_value_t> data;
    data.resize(indices[height] - indices[0]);
    for (size_t i = 0; i < data.size(); ++i) {
      data[i].col = uniformRandom(width);
    }
    auto mat = Matrix::createSparseMatrix(
        height, width, data.size(), NO_VALUE, SPARSE_CSR, false, useGpu);
    if (useGpu) {
      std::dynamic_pointer_cast<GpuSparseMatrix>(mat)->copyFrom(
          ids.data(), indices.data(), data.data(), HPPL_STREAM_DEFAULT);
    } else {
      std::dynamic_pointer_cast<CpuSparseMatrix>(mat)->copyFrom(
          ids.data(), indices.data(), data.data());
    }
    return mat;
  } else {
    std::vector<sparse_float_value_t> data;
    data.resize(indices[height] - indices[0]);
    for (size_t i = 0; i < data.size(); ++i) {
      data[i].col = uniformRandom(width);
      data[i].value = rand() / static_cast<float>(RAND_MAX);  // NOLINT
    }
    auto mat = Matrix::createSparseMatrix(
        height, width, data.size(), FLOAT_VALUE, SPARSE_CSR, false, useGpu);
    if (useGpu) {
      std::dynamic_pointer_cast<GpuSparseMatrix>(mat)->copyFrom(
          ids.data(), indices.data(), data.data(), HPPL_STREAM_DEFAULT);
    } else {
      std::dynamic_pointer_cast<CpuSparseMatrix>(mat)->copyFrom(
          ids.data(), indices.data(), data.data());
    }
    return mat;
  }
H
hedaoyuan 已提交
88 89
#endif
  return nullptr;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
}

void generateSequenceStartPositions(size_t batchSize,
                                    IVectorPtr& sequenceStartPositions) {
  ICpuGpuVectorPtr gpuCpuVec;
  generateSequenceStartPositions(batchSize, gpuCpuVec);
  sequenceStartPositions = gpuCpuVec->getMutableVector(false);
}

void generateSequenceStartPositions(size_t batchSize,
                                    ICpuGpuVectorPtr& sequenceStartPositions) {
  int numSeqs;
  if (FLAGS_fixed_seq_length != 0) {
    numSeqs = std::ceil((float)batchSize / (float)FLAGS_fixed_seq_length);
  } else {
    numSeqs = batchSize / 10 + 1;
  }
  sequenceStartPositions =
      ICpuGpuVector::create(numSeqs + 1, /* useGpu= */ false);
  int* buf = sequenceStartPositions->getMutableData(false);
  int64_t pos = 0;
  int len = FLAGS_fixed_seq_length;
  int maxLen = 2 * batchSize / numSeqs;
  for (int i = 0; i < numSeqs; ++i) {
    if (FLAGS_fixed_seq_length == 0) {
      len = uniformRandom(
                std::min<int64_t>(maxLen, batchSize - pos - numSeqs + i)) +
            1;
    }
    buf[i] = pos;
    pos += len;
    VLOG(1) << " len=" << len;
  }
  buf[numSeqs] = batchSize;
}

void generateSubSequenceStartPositions(
    const ICpuGpuVectorPtr& sequenceStartPositions,
    ICpuGpuVectorPtr& subSequenceStartPositions) {
  int numSeqs = sequenceStartPositions->getSize() - 1;
  const int* buf = sequenceStartPositions->getData(false);
  int numOnes = 0;
  for (int i = 0; i < numSeqs; ++i) {
    if (buf[i + 1] - buf[i] == 1) {
      ++numOnes;
    }
  }
  // each seq has two sub-seq except length 1
  int numSubSeqs = numSeqs * 2 - numOnes;
  subSequenceStartPositions =
      ICpuGpuVector::create(numSubSeqs + 1, /* useGpu= */ false);
  int* subBuf = subSequenceStartPositions->getMutableData(false);
  int j = 0;
  for (int i = 0; i < numSeqs; ++i) {
    if (buf[i + 1] - buf[i] == 1) {
      subBuf[j++] = buf[i];
    } else {
      int len = uniformRandom(buf[i + 1] - buf[i] - 1) + 1;
      subBuf[j++] = buf[i];
      subBuf[j++] = buf[i] + len;
    }
  }
  subBuf[j] = buf[numSeqs];
}

void generateMDimSequenceData(const IVectorPtr& sequenceStartPositions,
                              IVectorPtr& cpuSequenceDims) {
  /* generate sequences with 2 dims */
  int numSeqs = sequenceStartPositions->getSize() - 1;
  int numDims = 2;

  cpuSequenceDims = IVector::create(numSeqs * numDims, /* useGpu= */ false);
  int* bufStarts = sequenceStartPositions->getData();
  int* bufDims = cpuSequenceDims->getData();

  for (int i = 0; i < numSeqs; i++) {
    int len = bufStarts[i + 1] - bufStarts[i];
    /* get width and height randomly */
    std::vector<int> dimVec;
    for (int j = 0; j < len; j++) {
      if (len % (j + 1) == 0) {
        dimVec.push_back(1);
      }
    }
    int idx = rand() % dimVec.size();  // NOLINT use rand_r
    bufDims[i * numDims] = dimVec[idx];
    bufDims[i * numDims + 1] = len / dimVec[idx];
  }
}

void generateMDimSequenceData(const ICpuGpuVectorPtr& sequenceStartPositions,
                              IVectorPtr& cpuSequenceDims) {
  /* generate sequences with 2 dims */
  int numSeqs = sequenceStartPositions->getSize() - 1;
  int numDims = 2;

  cpuSequenceDims = IVector::create(numSeqs * numDims, /* useGpu= */ false);
  const int* bufStarts = sequenceStartPositions->getData(false);
  int* bufDims = cpuSequenceDims->getData();

  for (int i = 0; i < numSeqs; i++) {
    int len = bufStarts[i + 1] - bufStarts[i];
    /* get width and height randomly */
    std::vector<int> dimVec;
    for (int j = 0; j < len; j++) {
      if (len % (j + 1) == 0) {
        dimVec.push_back(1);
      }
    }
    int idx = rand() % dimVec.size();  // NOLINT use rand_r
    bufDims[i * numDims] = dimVec[idx];
    bufDims[i * numDims + 1] = len / dimVec[idx];
  }
}

void checkMatrixEqual(const MatrixPtr& a, const MatrixPtr& b) {
  EXPECT_EQ(a->getWidth(), b->getWidth());
  EXPECT_EQ(a->getHeight(), b->getHeight());
  EXPECT_EQ(a->isTransposed(), b->isTransposed());
  for (size_t r = 0; r < a->getHeight(); ++r) {
    for (size_t c = 0; c < a->getWidth(); ++c) {
      EXPECT_FLOAT_EQ(a->getElement(r, c), b->getElement(r, c));
    }
  }
}

void checkVectorEqual(const IVectorPtr& a, const IVectorPtr& b) {
  EXPECT_EQ(a->getSize(), b->getSize());
  for (size_t r = 0; r < a->getSize(); ++r) {
    EXPECT_FLOAT_EQ(a->get(r), b->get(r));
  }
}
}  // namespace paddle