ppyoloe_crn_t_p2_320_300e_coco.yml 2.0 KB
Newer Older
1 2 3 4 5
_BASE_: [
  '../datasets/coco_detection.yml',
  '../runtime.yml',
  './_base_/optimizer_300e.yml',
  './_base_/ppyoloe_crn.yml',
6
  './_base_/ppyoloe_plus_reader_320.yml',
7 8 9 10
]

log_iter: 100
snapshot_epoch: 10
11
weights: output/ppyoloe_crn_t_p2_320_300e_coco/model_final
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_t_pretrained.pdparams
depth_mult: 0.33
width_mult: 0.375


CSPResNet:
  return_idx: [0, 1, 2, 3]

CustomCSPPAN:
  out_channels: [768, 384, 192, 96]

PPYOLOEHead:
  fpn_strides: [32, 16, 8, 4]
  attn_conv: 'repvgg' #
  assigner:
    name: TaskAlignedAssigner
    topk: 13
    alpha: 1.0
    beta: 6.0
    is_close_gt: True #
  nms:
    name: MultiClassNMS
    nms_top_k: 1000
    keep_top_k: 300
    score_threshold: 0.01
    nms_threshold: 0.7


worker_num: 4
eval_height: &eval_height 320
eval_width: &eval_width 320
eval_size: &eval_size [*eval_height, *eval_width]

TrainReader:
  sample_transforms:
    - Decode: {}
    - RandomDistort: {}
    - RandomExpand: {fill_value: [123.675, 116.28, 103.53]}
    - RandomCrop: {}
    - RandomFlip: {}
  batch_transforms:
    - BatchRandomResize: {target_size: [224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544], random_size: True, random_interp: True, keep_ratio: False}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
    - PadGT: {}
  batch_size: 8
  shuffle: true
  drop_last: true
  use_shared_memory: true
  collate_batch: true

EvalReader:
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_size: 2

TestReader:
  inputs_def:
    image_shape: [3, *eval_height, *eval_width]
  sample_transforms:
    - Decode: {}
    - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2}
    - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    - Permute: {}
  batch_size: 1
  fuse_normalize: True