conv_op.cc 11.2 KB
Newer Older
C
chengduoZH 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

C
chengduoZH 已提交
15
#include "paddle/operators/conv_op.h"
C
chengduoZH 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
chengduoZH 已提交
20
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
21
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
22
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
24
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
26
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
27 28 29 30 31 32

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
33
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "Conv intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
37 38 39 40 41 42 43 44 45
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
46

Y
Yang Yu 已提交
47
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
48
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
49
                    "channels * groups.");
F
fengjiayi 已提交
50

C
chengduoZH 已提交
51
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
52
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
53 54 55
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
56
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
57 58 59 60 61 62
    PADDLE_ENFORCE(in_dims[i + 2] + 2 * paddings[i] -
                           (dilations[i] * (filter_dims[i + 2] - 1) + 1) >
                       0,
                   "Due to the settings of paddings, filter_dims and "
                   "dilations, the output size is less than 0, please check "
                   "again.");
C
chengduoZH 已提交
63
    output_shape.push_back(OutputSize(in_dims[i + 2], filter_dims[i + 2],
C
chengduoZH 已提交
64
                                      dilations[i], paddings[i], strides[i]));
C
chengduoZH 已提交
65
  }
66
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
67
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
68 69
}

70
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
71 72 73
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
74 75 76 77
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
78
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
79
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
80 81
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
82 83
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
84 85
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
86 87
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
88 89 90 91
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
92
      .SetDefault({1, 1});
C
chengduoZH 已提交
93 94 95 96
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
97 98 99
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
100
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
101 102 103 104
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
105
      .SetDefault(1);
C
chengduoZH 已提交
106
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
107 108
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
109
                            "convolution operator.")
C
chengduoZH 已提交
110
      .SetDefault({1, 1});
C
chengduoZH 已提交
111
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
112 113
Convolution Operator.

C
chengduoZH 已提交
114
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
115
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
116
parameters is checked in the infer-shape.
C
chengduoZH 已提交
117
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
118
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
119 120 121 122 123 124
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
125 126 127 128
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
129 130
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
131
  Output:
C
chengduoZH 已提交
132 133 134 135 136 137
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
138
)DOC");
C
chengduoZH 已提交
139 140
}

141
Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
C
chengduoZH 已提交
142 143 144
    : OpProtoAndCheckerMaker(proto, op_checker) {
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
145
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
146
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
147 148 149
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
150
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
151
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
152 153
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
154 155 156
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
157 158
           "input image channels divided by the groups.");
  AddOutput("Output",
C
fix doc  
chengduoZH 已提交
159
            "(Tensor) The output tensor of convolution operator."
C
chengduoZH 已提交
160
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
161 162 163 164
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
165
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
166 167 168 169
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
170 171 172
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
173
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
174 175 176 177
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
178
      .SetDefault(1);
C
chengduoZH 已提交
179
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
180 181
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
182
                            "convolution operator.")
C
chengduoZH 已提交
183
      .SetDefault({1, 1, 1});
C
fix doc  
chengduoZH 已提交
184

C
chengduoZH 已提交
185
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
186 187
Convolution3D Operator.

C
chengduoZH 已提交
188
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
189
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
190
parameters is checked in the infer-shape.
C
chengduoZH 已提交
191
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
192
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
193 194 195 196 197 198
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
199 200 201 202
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
203 204
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
205
  Output:
C
chengduoZH 已提交
206 207 208 209 210 211 212
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
213 214 215
)DOC");
}

C
chengduoZH 已提交
216 217 218 219 220 221 222 223 224 225 226
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

C
chengduoZH 已提交
227 228 229 230
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
231 232 233 234 235 236
REGISTER_OP(conv2d, ops::ConvOp, ops::Conv2DOpMaker, conv2d_grad,
            ops::ConvOpGrad);
REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad,
            ops::ConvOpGrad);

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
237 238 239 240 241 242
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
243 244

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
245 246 247 248 249 250
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);