bbox_utils.py 2.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

K
Kaipeng Deng 已提交
21 22
from .logger import setup_logger
logger = setup_logger(__name__)
littletomatodonkey's avatar
littletomatodonkey 已提交
23

K
Kaipeng Deng 已提交
24
__all__ = ["bbox_overlaps", "box_to_delta"]
littletomatodonkey's avatar
littletomatodonkey 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81


def bbox_overlaps(boxes_1, boxes_2):
    '''
    bbox_overlaps
        boxes_1: x1, y, x2, y2
        boxes_2: x1, y, x2, y2
    '''
    assert boxes_1.shape[1] == 4 and boxes_2.shape[1] == 4

    num_1 = boxes_1.shape[0]
    num_2 = boxes_2.shape[0]

    x1_1 = boxes_1[:, 0:1]
    y1_1 = boxes_1[:, 1:2]
    x2_1 = boxes_1[:, 2:3]
    y2_1 = boxes_1[:, 3:4]
    area_1 = (x2_1 - x1_1 + 1) * (y2_1 - y1_1 + 1)

    x1_2 = boxes_2[:, 0].transpose()
    y1_2 = boxes_2[:, 1].transpose()
    x2_2 = boxes_2[:, 2].transpose()
    y2_2 = boxes_2[:, 3].transpose()
    area_2 = (x2_2 - x1_2 + 1) * (y2_2 - y1_2 + 1)

    xx1 = np.maximum(x1_1, x1_2)
    yy1 = np.maximum(y1_1, y1_2)
    xx2 = np.minimum(x2_1, x2_2)
    yy2 = np.minimum(y2_1, y2_2)

    w = np.maximum(0.0, xx2 - xx1 + 1)
    h = np.maximum(0.0, yy2 - yy1 + 1)
    inter = w * h

    ovr = inter / (area_1 + area_2 - inter)
    return ovr


def box_to_delta(ex_boxes, gt_boxes, weights):
    """ box_to_delta """
    ex_w = ex_boxes[:, 2] - ex_boxes[:, 0] + 1
    ex_h = ex_boxes[:, 3] - ex_boxes[:, 1] + 1
    ex_ctr_x = ex_boxes[:, 0] + 0.5 * ex_w
    ex_ctr_y = ex_boxes[:, 1] + 0.5 * ex_h

    gt_w = gt_boxes[:, 2] - gt_boxes[:, 0] + 1
    gt_h = gt_boxes[:, 3] - gt_boxes[:, 1] + 1
    gt_ctr_x = gt_boxes[:, 0] + 0.5 * gt_w
    gt_ctr_y = gt_boxes[:, 1] + 0.5 * gt_h

    dx = (gt_ctr_x - ex_ctr_x) / ex_w / weights[0]
    dy = (gt_ctr_y - ex_ctr_y) / ex_h / weights[1]
    dw = (np.log(gt_w / ex_w)) / weights[2]
    dh = (np.log(gt_h / ex_h)) / weights[3]

    targets = np.vstack([dx, dy, dw, dh]).transpose()
    return targets