test_sequence_softmax_op.py 2.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19 20
from op_test import OpTest
from test_softmax_op import stable_softmax
21
import paddle.fluid.core as core
22 23 24 25 26


class TestSequenceSoftmaxOp(OpTest):
    def setUp(self):
        self.op_type = "sequence_softmax"
27 28 29
        self.use_cudnn = False
        self.init_op_type()

30
        x = np.random.uniform(0.1, 1, (11, 1)).astype("float32")
31
        self.init_lod()
32
        out = np.zeros((11, 1)).astype("float32")
33
        offset = 0
34 35 36 37 38
        for i in range(len(self.lod[0])):
            if (self.lod[0][i] == 0):
                continue
            sub_x = x[offset:offset + self.lod[0][i], :]
            sub_x = sub_x.reshape(1, self.lod[0][i])
39
            sub_out = stable_softmax(sub_x)
40 41 42
            out[offset:offset + self.lod[0][i], :] = sub_out.reshape(
                self.lod[0][i], 1)
            offset += self.lod[0][i]
43

44
        self.inputs = {"X": (x, self.lod)}
45
        self.outputs = {"Out": out}
46 47
        self.attrs = {'use_cudnn': self.use_cudnn, }

48 49 50
    def init_lod(self):
        self.lod = [[4, 1, 3, 3]]

51 52
    def init_op_type(self):
        pass
53 54

    def test_check_output(self):
55 56 57 58 59
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
60

61
    def test_check_grad(self):
62 63 64 65 66 67 68 69 70
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ["X"], "Out", max_relative_error=0.01)
        else:
            self.check_grad(["X"], "Out", max_relative_error=0.01)


# ----------------cudnn Sequencesoftmax----------------
71 72
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
73 74 75
class TestSequenceSoftmaxCUDNNOp(TestSequenceSoftmaxOp):
    def init_op_type(self):
        self.use_cudnn = True
76

77

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
class TestSequenceSoftmaxOpSeqLen0Case0(TestSequenceSoftmaxOp):
    def init_lod(self):
        self.lod = [[4, 0, 4, 3]]


class TestSequenceSoftmaxOpSeqLen0Case1(TestSequenceSoftmaxOp):
    def init_lod(self):
        self.lod = [[0, 4, 7, 0]]


class TestSequenceSoftmaxOpSeqLen0Case2(TestSequenceSoftmaxOp):
    def init_lod(self):
        self.lod = [[0, 0, 0, 11]]


93 94
if __name__ == "__main__":
    unittest.main()