reader.py 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import os
20 21 22 23 24
import copy
import functools
import collections
import traceback
import numpy as np
25
import logging
26 27

from ppdet.core.workspace import register, serializable
28
from paddle.fluid.dygraph.parallel import ParallelEnv
29 30

from .parallel_map import ParallelMap
K
Kaipeng Deng 已提交
31
from .transform.batch_operators import Gt2YoloTarget
32 33

__all__ = ['Reader', 'create_reader']
34 35 36 37

logger = logging.getLogger(__name__)


38 39 40 41 42 43 44 45 46 47 48 49
class Compose(object):
    def __init__(self, transforms, ctx=None):
        self.transforms = transforms
        self.ctx = ctx

    def __call__(self, data):
        ctx = self.ctx if self.ctx else {}
        for f in self.transforms:
            try:
                data = f(data, ctx)
            except Exception as e:
                stack_info = traceback.format_exc()
G
Guanghua Yu 已提交
50
                logger.warn("fail to map op [{}] with error: {} and stack:\n{}".
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                            format(f, e, str(stack_info)))
                raise e
        return data


def _calc_img_weights(roidbs):
    """ calculate the probabilities of each sample
    """
    imgs_cls = []
    num_per_cls = {}
    img_weights = []
    for i, roidb in enumerate(roidbs):
        img_cls = set([k for cls in roidbs[i]['gt_class'] for k in cls])
        imgs_cls.append(img_cls)
        for c in img_cls:
            if c not in num_per_cls:
                num_per_cls[c] = 1
            else:
                num_per_cls[c] += 1

    for i in range(len(roidbs)):
        weights = 0
        for c in imgs_cls[i]:
            weights += 1 / num_per_cls[c]
        img_weights.append(weights)
    # probabilities sum to 1
    img_weights = img_weights / np.sum(img_weights)
    return img_weights


def _has_empty(item):
    def empty(x):
        if isinstance(x, np.ndarray) and x.size == 0:
            return True
        elif isinstance(x, collections.Sequence) and len(x) == 0:
            return True
        else:
            return False

    if isinstance(item, collections.Sequence) and len(item) == 0:
        return True
    if item is None:
        return True
    if empty(item):
        return True
    return False


def _segm(samples):
    assert 'gt_poly' in samples
    segms = samples['gt_poly']
    if 'is_crowd' in samples:
        is_crowd = samples['is_crowd']
        if len(segms) != 0:
            assert len(segms) == is_crowd.shape[0]

    gt_masks = []
    valid = True
    for i in range(len(segms)):
        segm = segms[i]
        gt_segm = []
        if 'is_crowd' in samples and is_crowd[i]:
            gt_segm.append([[0, 0]])
        else:
            for poly in segm:
                if len(poly) == 0:
                    valid = False
                    break
                gt_segm.append(np.array(poly).reshape(-1, 2))
        if (not valid) or len(gt_segm) == 0:
            break
        gt_masks.append(gt_segm)
    return gt_masks


def batch_arrange(batch_samples, fields):
    def im_shape(samples, dim=3):
        # hard code
        assert 'h' in samples
        assert 'w' in samples
        if dim == 3:  # RCNN, ..
            return np.array((samples['h'], samples['w'], 1), dtype=np.float32)
        else:  # YOLOv3, ..
            return np.array((samples['h'], samples['w']), dtype=np.int32)

    arrange_batch = []
    for samples in batch_samples:
        one_ins = ()
        for i, field in enumerate(fields):
            if field == 'gt_mask':
                one_ins += (_segm(samples), )
            elif field == 'im_shape':
                one_ins += (im_shape(samples), )
            elif field == 'im_size':
                one_ins += (im_shape(samples, 2), )
            else:
                if field == 'is_difficult':
                    field = 'difficult'
                assert field in samples, '{} not in samples'.format(field)
                one_ins += (samples[field], )
        arrange_batch.append(one_ins)
    return arrange_batch


@register
@serializable
157
class Reader(object):
158 159 160 161 162 163 164 165 166 167 168 169 170 171
    """
    Args:
        dataset (DataSet): DataSet object
        sample_transforms (list of BaseOperator): a list of sample transforms
            operators.
        batch_transforms (list of BaseOperator): a list of batch transforms
            operators.
        batch_size (int): batch size.
        shuffle (bool): whether shuffle dataset or not. Default False.
        drop_last (bool): whether drop last batch or not. Default False.
        drop_empty (bool): whether drop sample when it's gt is empty or not.
            Default True.
        mixup_epoch (int): mixup epoc number. Default is -1, meaning
            not use mixup.
172 173
        cutmix_epoch (int): cutmix epoc number. Default is -1, meaning
            not use cutmix.
174 175 176 177 178 179 180 181 182 183 184 185
        class_aware_sampling (bool): whether use class-aware sampling or not.
            Default False.
        worker_num (int): number of working threads/processes.
            Default -1, meaning not use multi-threads/multi-processes.
        use_process (bool): whether use multi-processes or not.
            It only works when worker_num > 1. Default False.
        bufsize (int): buffer size for multi-threads/multi-processes,
            please note, one instance in buffer is one batch data.
        memsize (str): size of shared memory used in result queue when
            use_process is true. Default 3G.
        inputs_def (dict): network input definition use to get input fields,
            which is used to determine the order of returned data.
186
        devices_num (int): number of devices.
187 188 189 190 191 192 193 194 195 196 197
    """

    def __init__(self,
                 dataset=None,
                 sample_transforms=None,
                 batch_transforms=None,
                 batch_size=None,
                 shuffle=False,
                 drop_last=False,
                 drop_empty=True,
                 mixup_epoch=-1,
198
                 cutmix_epoch=-1,
199 200 201
                 class_aware_sampling=False,
                 worker_num=-1,
                 use_process=False,
K
Kaipeng Deng 已提交
202 203
                 use_fine_grained_loss=False,
                 num_classes=80,
204
                 bufsize=-1,
W
wangguanzhong 已提交
205
                 memsize='500M',
206 207
                 inputs_def=None,
                 devices_num=1):
208 209 210 211 212 213 214 215 216
        self._dataset = dataset
        self._roidbs = self._dataset.get_roidb()
        self._fields = copy.deepcopy(inputs_def[
            'fields']) if inputs_def else None

        # transform
        self._sample_transforms = Compose(sample_transforms,
                                          {'fields': self._fields})
        self._batch_transforms = None
K
Kaipeng Deng 已提交
217 218 219 220 221 222 223 224 225 226 227

        if use_fine_grained_loss:
            for bt in batch_transforms:
                if isinstance(bt, Gt2YoloTarget):
                    bt.num_classes = num_classes
        elif batch_transforms:
            batch_transforms = [
                bt for bt in batch_transforms
                if not isinstance(bt, Gt2YoloTarget)
            ]

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
        if batch_transforms:
            self._batch_transforms = Compose(batch_transforms,
                                             {'fields': self._fields})

        # data
        if inputs_def and inputs_def.get('multi_scale', False):
            from ppdet.modeling.architectures.input_helper import multiscale_def
            im_shape = inputs_def[
                'image_shape'] if 'image_shape' in inputs_def else [
                    3, None, None
                ]
            _, ms_fields = multiscale_def(im_shape, inputs_def['num_scales'],
                                          inputs_def['use_flip'])
            self._fields += ms_fields
        self._batch_size = batch_size
        self._shuffle = shuffle
        self._drop_last = drop_last
        self._drop_empty = drop_empty

        # sampling
248 249
        self._mixup_epoch = mixup_epoch // ParallelEnv().nranks
        self._cutmix_epoch = cutmix_epoch // ParallelEnv().nranks
250
        self._class_aware_sampling = class_aware_sampling
251

252 253
        self._load_img = False
        self._sample_num = len(self._roidbs)
254

255 256 257
        if self._class_aware_sampling:
            self.img_weights = _calc_img_weights(self._roidbs)
        self._indexes = None
258

259 260
        self._pos = -1
        self._epoch = -1
261

262 263
        self._curr_iter = 0

264 265 266 267 268
        # multi-process
        self._worker_num = worker_num
        self._parallel = None
        if self._worker_num > -1:
            task = functools.partial(self.worker, self._drop_empty)
269
            bufsize = devices_num * 2 if bufsize == -1 else bufsize
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
            self._parallel = ParallelMap(self, task, worker_num, bufsize,
                                         use_process, memsize)

    def __call__(self):
        if self._worker_num > -1:
            return self._parallel
        else:
            return self

    def __iter__(self):
        return self

    def reset(self):
        """implementation of Dataset.reset
        """
285 286 287 288 289
        if self._epoch < 0:
            self._epoch = 0
        else:
            self._epoch += 1

290 291 292 293 294
        self.indexes = [i for i in range(self.size())]
        if self._class_aware_sampling:
            self.indexes = np.random.choice(
                self._sample_num,
                self._sample_num,
295
                replace=True,
296 297 298
                p=self.img_weights)

        if self._shuffle:
299 300
            trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
            np.random.seed(self._epoch + trainer_id)
301 302 303
            np.random.shuffle(self.indexes)

        if self._mixup_epoch > 0 and len(self.indexes) < 2:
Y
Yang Zhang 已提交
304 305
            logger.debug("Disable mixup for dataset samples "
                         "less than 2 samples")
306
            self._mixup_epoch = -1
307 308 309 310
        if self._cutmix_epoch > 0 and len(self.indexes) < 2:
            logger.info("Disable cutmix for dataset samples "
                        "less than 2 samples")
            self._cutmix_epoch = -1
311 312 313 314 315 316 317 318 319 320 321 322

        self._pos = 0

    def __next__(self):
        return self.next()

    def next(self):
        if self._epoch < 0:
            self.reset()
        if self.drained():
            raise StopIteration
        batch = self._load_batch()
323
        self._curr_iter += 1
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        if self._drop_last and len(batch) < self._batch_size:
            raise StopIteration
        if self._worker_num > -1:
            return batch
        else:
            return self.worker(self._drop_empty, batch)

    def _load_batch(self):
        batch = []
        bs = 0
        while bs != self._batch_size:
            if self._pos >= self.size():
                break
            pos = self.indexes[self._pos]
            sample = copy.deepcopy(self._roidbs[pos])
339
            sample["curr_iter"] = self._curr_iter
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            self._pos += 1

            if self._drop_empty and self._fields and 'gt_mask' in self._fields:
                if _has_empty(_segm(sample)):
                    #logger.warn('gt_mask is empty or not valid in {}'.format(
                    #    sample['im_file']))
                    continue
            if self._drop_empty and self._fields and 'gt_bbox' in self._fields:
                if _has_empty(sample['gt_bbox']):
                    #logger.warn('gt_bbox {} is empty or not valid in {}, '
                    #   'drop this sample'.format(
                    #    sample['im_file'], sample['gt_bbox']))
                    continue

            if self._load_img:
                sample['image'] = self._load_image(sample['im_file'])

            if self._epoch < self._mixup_epoch:
                num = len(self.indexes)
                mix_idx = np.random.randint(1, num)
                mix_idx = self.indexes[(mix_idx + self._pos - 1) % num]
                sample['mixup'] = copy.deepcopy(self._roidbs[mix_idx])
362
                sample['mixup']["curr_iter"] = self._curr_iter
363 364 365
                if self._load_img:
                    sample['mixup']['image'] = self._load_image(sample['mixup'][
                        'im_file'])
366 367 368 369 370 371 372 373
            if self._epoch < self._cutmix_epoch:
                num = len(self.indexes)
                mix_idx = np.random.randint(1, num)
                sample['cutmix'] = copy.deepcopy(self._roidbs[mix_idx])
                sample['cutmix']["curr_iter"] = self._curr_iter
                if self._load_img:
                    sample['cutmix']['image'] = self._load_image(sample[
                        'cutmix']['im_file'])
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418

            batch.append(sample)
            bs += 1
        return batch

    def worker(self, drop_empty=True, batch_samples=None):
        """
        sample transform and batch transform.
        """
        batch = []
        for sample in batch_samples:
            sample = self._sample_transforms(sample)
            if drop_empty and 'gt_bbox' in sample:
                if _has_empty(sample['gt_bbox']):
                    #logger.warn('gt_bbox {} is empty or not valid in {}, '
                    #   'drop this sample'.format(
                    #    sample['im_file'], sample['gt_bbox']))
                    continue
            batch.append(sample)
        if len(batch) > 0 and self._batch_transforms:
            batch = self._batch_transforms(batch)
        if len(batch) > 0 and self._fields:
            batch = batch_arrange(batch, self._fields)
        return batch

    def _load_image(self, filename):
        with open(filename, 'rb') as f:
            return f.read()

    def size(self):
        """ implementation of Dataset.size
        """
        return self._sample_num

    def drained(self):
        """ implementation of Dataset.drained
        """
        assert self._epoch >= 0, 'The first epoch has not begin!'
        return self._pos >= self.size()

    def stop(self):
        if self._parallel:
            self._parallel.stop()


419
def create_reader(cfg, max_iter=0, global_cfg=None, devices_num=1):
420 421 422 423 424 425 426 427 428
    """
    Return iterable data reader.

    Args:
        max_iter (int): number of iterations.
    """
    if not isinstance(cfg, dict):
        raise TypeError("The config should be a dict when creating reader.")

K
Kaipeng Deng 已提交
429 430 431 432 433
    # synchornize use_fine_grained_loss/num_classes from global_cfg to reader cfg
    if global_cfg:
        cfg['use_fine_grained_loss'] = getattr(global_cfg,
                                               'use_fine_grained_loss', False)
        cfg['num_classes'] = getattr(global_cfg, 'num_classes', 80)
434
    cfg['devices_num'] = devices_num
435 436 437 438 439 440 441
    reader = Reader(**cfg)()

    def _reader():
        n = 0
        while True:
            for _batch in reader:
                if len(_batch) > 0:
442 443
                    yield _batch
                    n += 1
444
                if max_iter > 0 and n == max_iter:
445
                    return
446 447 448
            reader.reset()
            if max_iter <= 0:
                return
449

450
    return _reader