test_edit_distance_op.py 3.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
F
fengjiayi 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
F
fengjiayi 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15 16 17 18 19 20 21 22
import unittest
import numpy as np
from op_test import OpTest


def Levenshtein(hyp, ref):
    """ Compute the Levenshtein distance between two strings.

23
    :param hyp: hypothesis string in index
Y
Yibing Liu 已提交
24
    :type hyp: list
25
    :param ref: reference string in index
Y
Yibing Liu 已提交
26 27 28 29 30 31 32 33 34
    :type ref: list
    """
    m = len(hyp)
    n = len(ref)
    if m == 0:
        return n
    if n == 0:
        return m

35
    dist = np.zeros((m + 1, n + 1)).astype("float32")
Y
Yibing Liu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    for i in range(0, m + 1):
        dist[i][0] = i
    for j in range(0, n + 1):
        dist[0][j] = j

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            cost = 0 if hyp[i - 1] == ref[j - 1] else 1
            deletion = dist[i - 1][j] + 1
            insertion = dist[i][j - 1] + 1
            substitution = dist[i - 1][j - 1] + cost
            dist[i][j] = min(deletion, insertion, substitution)
    return dist[m][n]


51
class TestEditDistanceOp(OpTest):
52 53 54
    def setUp(self):
        self.op_type = "edit_distance"
        normalized = False
55 56
        x1 = np.array([[12, 3, 5, 8, 2]]).astype("int64")
        x2 = np.array([[12, 4, 7, 8]]).astype("int64")
57 58
        x1 = np.transpose(x1)
        x2 = np.transpose(x2)
59 60
        x1_lod = [1, 4]
        x2_lod = [3, 1]
61

62
        num_strs = len(x1_lod)
63
        distance = np.zeros((num_strs, 1)).astype("float32")
64
        sequence_num = np.array(2).astype("int64")
65 66 67

        x1_offset = 0
        x2_offset = 0
68 69
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
70 71 72 73
                hyp=x1[x1_offset:(x1_offset + x1_lod[i])],
                ref=x2[x2_offset:(x2_offset + x2_lod[i])])
            x1_offset += x1_lod[i]
            x2_offset += x2_lod[i]
74
            if normalized is True:
75
                len_ref = x2_lod[i]
76
                distance[i] = distance[i] / len_ref
77

78 79
        self.attrs = {'normalized': normalized}
        self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
80
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
81 82 83 84 85

    def test_check_output(self):
        self.check_output()


86
class TestEditDistanceOpNormalized(OpTest):
Y
Yibing Liu 已提交
87
    def setUp(self):
88
        self.op_type = "edit_distance"
Y
Yibing Liu 已提交
89
        normalized = True
90 91
        x1 = np.array([[10, 3, 6, 5, 8, 2]]).astype("int64")
        x2 = np.array([[10, 4, 6, 7, 8]]).astype("int64")
92 93
        x1 = np.transpose(x1)
        x2 = np.transpose(x2)
94 95
        x1_lod = [1, 2, 3]
        x2_lod = [2, 1, 2]
Y
Yibing Liu 已提交
96

97
        num_strs = len(x1_lod)
98
        distance = np.zeros((num_strs, 1)).astype("float32")
99
        sequence_num = np.array(3).astype("int64")
100 101 102

        x1_offset = 0
        x2_offset = 0
103 104
        for i in range(0, num_strs):
            distance[i] = Levenshtein(
105 106 107 108
                hyp=x1[x1_offset:(x1_offset + x1_lod[i])],
                ref=x2[x2_offset:(x2_offset + x2_lod[i])])
            x1_offset += x1_lod[i]
            x2_offset += x2_lod[i]
109
            if normalized is True:
110
                len_ref = x2_lod[i]
111
                distance[i] = distance[i] / len_ref
112

Y
Yibing Liu 已提交
113
        self.attrs = {'normalized': normalized}
114
        self.inputs = {'Hyps': (x1, [x1_lod]), 'Refs': (x2, [x2_lod])}
115
        self.outputs = {'Out': distance, 'SequenceNum': sequence_num}
Y
Yibing Liu 已提交
116 117 118 119 120 121 122

    def test_check_output(self):
        self.check_output()


if __name__ == '__main__':
    unittest.main()