optimizer.py 20.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14
from collections import defaultdict
Q
Qiao Longfei 已提交
15

16
import framework
F
fengjiayi 已提交
17
from backward import append_backward
18
from framework import unique_name, program_guard
19 20 21
from initializer import Constant
from layer_helper import LayerHelper
from regularizer import append_regularization_ops
F
fengjiayi 已提交
22
from clip import append_gradient_clip_ops, error_clip_callback
23

24
__all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad']
Q
Qiao Longfei 已提交
25 26 27 28 29 30


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
31 32
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
33 34
    """

D
dzhwinter 已提交
35
    def __init__(self, global_step=None, regularization=None):
36
        self._global_step = global_step
D
dzhwinter 已提交
37
        self.regularization = regularization
38 39 40 41 42
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
43
        self.helper = None
Q
Qiao Longfei 已提交
44 45 46 47 48 49

    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

50 51 52 53 54 55 56 57 58 59 60 61 62
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
        param_lr_shape = [1]
        param_lr_var = self.helper.create_global_variable(
            name=unique_name("learning_rate"),
            dtype='float32',
            shape=param_lr_shape,
            lod_level=1,
            persistable=True)
        param_lr = param_lr * self._learning_rate
        self.helper.set_variable_initializer(
63
            var=param_lr_var, initializer=Constant(param_lr))
64
        return param_lr_var
65 66 67 68 69 70 71

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
72
        """
73 74
        pass

75 76 77 78 79 80 81 82 83 84 85 86 87
    def _finish_update(self, block):
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
            list of finish ops or None
        """
        pass

Q
Qiao Longfei 已提交
88
    def _add_accumulator(self, name, param, dtype=None, fill_value=0.0):
89 90 91 92 93 94 95 96 97 98 99
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
100
            raise Exception("Accumulator {} already exists for parameter {}".
101
                            format(name, param.name))
Q
Qiao Longfei 已提交
102 103 104 105 106

        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
            name=unique_name(name),
            persistable=True,
F
fengjiayi 已提交
107
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
108 109 110
            type=param.type,
            shape=param.shape)
        self.helper.set_variable_initializer(
111
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
112
        self._accumulators[name][param.name] = var
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def _increment_global_step(self, block):
        """Increment the global step by 1 after every iteration

        Args:
            block: the block in which the loss variable is present

        Returns:
            list with global_step increment op as its only element
        """
        assert isinstance(block, framework.Block)
        assert self._global_step is not None
        # create the increment op
        increment_op = block.append_op(
            type="increment",
            inputs={"X": self._global_step},
            outputs={"Out": self._global_step},
            attrs={"step": 1.0})

        return increment_op

Q
Qiao Longfei 已提交
150 151 152
    def create_optimization_pass(self,
                                 parameters_and_grads,
                                 loss,
153
                                 startup_program=None):
Q
Qiao Longfei 已提交
154 155 156 157 158 159 160
        """Add optimization operators to update gradients to variables.

        Args:
          loss: the target that this optimization is for.
          parameters_and_grads: a list of (variable, gradient) pair to update.

        Returns:
161 162 163 164
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
165
          :param startup_program: 
Q
Qiao Longfei 已提交
166
        """
167 168 169 170 171
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
172
        # for parameters and extend _finish_update method to add custom ops.
173 174

        # Create any accumulators
Q
Qiao Longfei 已提交
175
        program = loss.block.program
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        with program_guard(program, startup_program):
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
                if param_and_grad[0].trainable is True and param_and_grad[
                        1] is not None:
                    optimize_op = self._append_optimize_op(loss.block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

            # Returned list of ops can include more ops in addition
            # to optimization ops
            return_ops = optimize_ops

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
            finish_ops = self._finish_update(loss.block)
            if finish_ops is not None:
                return_ops += finish_ops

            if self._global_step is not None:
                return_ops.append(self._increment_global_step(loss.block))
            return return_ops
Q
Qiao Longfei 已提交
202

Q
Qiao Longfei 已提交
203 204
    def minimize(self,
                 loss,
205
                 startup_program=None,
Q
Qiao Longfei 已提交
206 207
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
208 209
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
210
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
211 212
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
213 214
        params_grads = append_backward(loss, parameter_list, no_grad_set,
                                       error_clip_callback)
Y
Yu Yang 已提交
215 216 217

        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
218
        # Add regularization if any
D
dzhwinter 已提交
219 220
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
221

Q
Qiao Longfei 已提交
222
        optimize_ops = self.create_optimization_pass(params_grads, loss,
223
                                                     startup_program)
T
typhoonzero 已提交
224
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
225 226 227 228 229 230


class SGDOptimizer(Optimizer):
    """ Simple SGD optimizer without any state.
    """

D
dzhwinter 已提交
231
    def __init__(self, learning_rate, **kwargs):
Q
Qiao Longfei 已提交
232
        assert learning_rate is not None
D
dzhwinter 已提交
233
        super(SGDOptimizer, self).__init__(**kwargs)
Q
Qiao Longfei 已提交
234 235 236
        self.type = "sgd"
        self._learning_rate = learning_rate

237 238
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
239

Q
Qiao Longfei 已提交
240 241 242 243 244 245
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
246
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
247
            },
248
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
249 250

        return sgd_op
251 252 253 254 255 256 257


class MomentumOptimizer(Optimizer):
    """Simple Momentum optimizer with velocity state
    """
    _velocity_acc_str = "velocity"

D
dzhwinter 已提交
258
    def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs):
259 260
        assert learning_rate is not None
        assert momentum is not None
D
dzhwinter 已提交
261
        super(MomentumOptimizer, self).__init__(**kwargs)
262 263 264
        self.type = "momentum"
        self._learning_rate = learning_rate
        self._momentum = momentum
265
        self._use_nesterov = bool(use_nesterov)
266 267 268 269 270

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
271
            self._add_accumulator(self._velocity_acc_str, p)
272 273 274 275 276 277 278 279 280 281 282 283 284

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
285
                "LearningRate": self._create_param_lr(param_and_grad)
286 287 288 289 290
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
291
            attrs={"mu": self._momentum,
292
                   "use_nesterov": self._use_nesterov})
293 294

        return momentum_op
295 296 297 298 299 300 301


class AdagradOptimizer(Optimizer):
    """Simple Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
302
    def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs):
303 304
        assert learning_rate is not None
        assert epsilon is not None
D
dzhwinter 已提交
305
        super(AdagradOptimizer, self).__init__(**kwargs)
306 307 308 309 310 311 312 313
        self.type = "adagrad"
        self._learning_rate = learning_rate
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
314
            self._add_accumulator(self._moment_acc_str, p)
315 316 317 318 319 320 321

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

322
        # Create the adagrad optimizer op
323 324 325 326 327 328
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
329
                "LearningRate": self._create_param_lr(param_and_grad)
330 331 332 333 334 335
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
336 337 338 339 340 341 342 343 344 345 346 347


class AdamOptimizer(Optimizer):
    """Implements the Adam Optimizer
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
348
                 epsilon=1e-8,
D
dzhwinter 已提交
349
                 **kwargs):
350 351 352 353
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
354
        super(AdamOptimizer, self).__init__(**kwargs)
355 356 357 358 359 360 361 362 363
        self.type = "adam"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

Q
Qiao Longfei 已提交
364
        main_block = block.program.global_block()
365 366
        # Create beta1 and beta2 power tensors
        beta_shape = [1]
Q
Qiao Longfei 已提交
367 368 369 370 371 372 373
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
374
            self._beta1_pow_acc, initializer=Constant(self._beta1))
Q
Qiao Longfei 已提交
375 376 377 378 379 380 381 382 383

        self._beta2_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta2_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)

        self.helper.set_variable_initializer(
384
            self._beta2_pow_acc, initializer=Constant(self._beta2))
385 386 387

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
388 389
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
390 391 392 393 394 395 396 397

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
398
        # create the adam optimize op
399 400 401 402 403
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
404
                "LearningRate": self._create_param_lr(param_and_grad),
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": self._beta1_pow_acc,
                "Beta2Pow": self._beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

    def _finish_update(self, block):
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
427 428
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
429 430 431 432 433
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

Q
Qiao Longfei 已提交
434
        scale_beta2 = main_block.append_op(
435 436 437 438 439 440
            type="scale",
            inputs={"X": self._beta2_pow_acc},
            outputs={"Out": self._beta2_pow_acc},
            attrs={"scale": self._beta2})

        return [scale_beta1, scale_beta2]
441 442 443 444 445 446 447 448 449 450 451 452


class AdamaxOptimizer(Optimizer):
    """Implements the Adamax Optimizer
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
453
                 epsilon=1e-8,
D
dzhwinter 已提交
454
                 **kwargs):
455 456 457 458
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
D
dzhwinter 已提交
459
        super(AdamaxOptimizer, self).__init__(**kwargs)
460 461 462 463 464 465 466 467 468
        self.type = "adamax"
        self._learning_rate = learning_rate
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create beta1 power accumulator tensor
        beta_shape = [1]
Q
Qiao Longfei 已提交
469 470 471 472 473 474 475
        self._beta1_pow_acc = self.helper.create_global_variable(
            name=unique_name('beta1_pow_acc'),
            dtype='float32',
            shape=beta_shape,
            lod_level=0,
            persistable=True)
        self.helper.set_variable_initializer(
476
            self._beta1_pow_acc, initializer=Constant(self._beta1))
477 478 479

        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
480 481
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
482 483 484 485 486 487 488 489 490 491 492 493 494

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
495
                "LearningRate": self._create_param_lr(param_and_grad),
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                "Moment": moment,
                "InfNorm": inf_norm,
                "Beta1Pow": self._beta1_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

    def _finish_update(self, block):
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
517 518
        main_block = block.program.global_block()
        scale_beta1 = main_block.append_op(
519 520 521 522 523 524
            type="scale",
            inputs={"X": self._beta1_pow_acc},
            outputs={"Out": self._beta1_pow_acc},
            attrs={"scale": self._beta1})

        return [scale_beta1]
525 526 527 528 529 530 531


class DecayedAdagradOptimizer(Optimizer):
    """Simple Decayed Adagrad optimizer with moment state
    """
    _moment_acc_str = "moment"

D
dzhwinter 已提交
532
    def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs):
533 534 535 536
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

D
dzhwinter 已提交
537
        super(DecayedAdagradOptimizer, self).__init__(**kwargs)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
        self.type = "decayed_adagrad"
        self._learning_rate = learning_rate
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584


# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer