test_weight_decay.py 6.4 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import contextlib

import unittest
from functools import partial
import numpy as np
import paddle
import paddle.fluid.core as core

import paddle.fluid as fluid


def get_places():
    places = []
    if core.is_compiled_with_cuda():
        places.append(core.CUDAPlace(0))
    return places


@contextlib.contextmanager
def prog_scope_guard(main_prog, startup_prog):
    scope = fluid.core.Scope()
    with fluid.unique_name.guard():
        with fluid.scope_guard(scope):
            with fluid.program_guard(main_prog, startup_prog):
                yield


def bow_net(data,
            label,
            dict_dim,
            is_sparse=False,
            emb_dim=128,
            hid_dim=128,
            hid_dim2=96,
            class_dim=2):
    """
    BOW net
    This model is from https://github.com/PaddlePaddle/models:
    fluid/PaddleNLP/text_classification/nets.py
    """
    emb = fluid.layers.embedding(
        input=data, is_sparse=is_sparse, size=[dict_dim, emb_dim])
    bow = fluid.layers.sequence_pool(input=emb, pool_type='sum')
    bow_tanh = fluid.layers.tanh(bow)
    fc_1 = fluid.layers.fc(input=bow_tanh, size=hid_dim, act="tanh")
    fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh")
    prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax")
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    return avg_cost


class TestWeightDecay(unittest.TestCase):
    def setUp(self):
        self.word_dict = paddle.dataset.imdb.word_dict()
        reader = paddle.batch(
            paddle.dataset.imdb.train(self.word_dict), batch_size=4)()
        self.train_data = [next(reader) for _ in range(5)]
        self.learning_rate = .5

    def run_executor(self, place, feed_list, loss):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())
        main_prog = fluid.default_main_program()
        loss_set = []
        for data in self.train_data:
            out = exe.run(main_prog,
                          feed=feeder.feed(data),
                          fetch_list=[loss.name])

            print("loss              %s" % (np.average(out)))
            loss_set.append(np.average(out))

        return loss_set

    def run_parallel_exe(self,
                         place,
                         feed_list,
                         loss,
                         use_cuda=True,
                         use_reduce=False,
                         use_fast_executor=False,
                         use_ir_memory_optimize=False):
        exe = fluid.Executor(place)
        feeder = fluid.DataFeeder(feed_list=feed_list, place=place)
        exe.run(fluid.default_startup_program())

        exec_strategy = fluid.ExecutionStrategy()
        if use_fast_executor:
            exec_strategy.use_experimental_executor = True

        build_strategy = fluid.BuildStrategy()
        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce \
                if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
        build_strategy.memory_optimize = use_ir_memory_optimize

        parallel_exe = fluid.ParallelExecutor(
            use_cuda,
            loss_name=loss.name,
            exec_strategy=exec_strategy,
            build_strategy=build_strategy)

        loss_set = []
        for data in self.train_data:
            out = parallel_exe.run(feed=feeder.feed(data),
                                   fetch_list=[loss.name])
            print("loss              %s" % (np.average(out)))
            loss_set.append(np.average(out))

        return loss_set

    def check_weight_decay(self,
                           place,
                           model,
                           use_parallel_exe=False,
                           use_reduce=False):
        main_prog = fluid.framework.Program()
        startup_prog = fluid.framework.Program()
        startup_prog.random_seed = 1
        with prog_scope_guard(main_prog=main_prog, startup_prog=startup_prog):

            data = fluid.layers.data(
                name="words", shape=[1], dtype="int64", lod_level=1)
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")

            avg_cost = model(data, label, len(self.word_dict))

            param_list = [(var, var * self.learning_rate)
                          for var in main_prog.block(0).all_parameters()]

            optimizer = fluid.optimizer.Adagrad(
                learning_rate=self.learning_rate)

            optimizer.minimize(avg_cost)

            for params in param_list:
                updated_p = fluid.layers.elementwise_sub(
                    x=params[0], y=params[1])
                fluid.layers.assign(input=updated_p, output=params[0])

            if use_parallel_exe:
                loss = self.run_parallel_exe(
                    place, [data, label],
                    loss=avg_cost,
                    use_cuda=True,
                    use_reduce=use_reduce)
            else:
                loss = self.run_executor(place, [data, label], loss=avg_cost)

        return loss

    def test_weight_decay(self):
        model = partial(bow_net, is_sparse=False)
        for place in get_places():
            loss = self.check_weight_decay(place, model, use_parallel_exe=False)

            loss2 = self.check_weight_decay(
                place, model, use_parallel_exe=True, use_reduce=False)

            for i in range(len(loss)):
                assert np.isclose(a=loss[i], b=loss2[i], rtol=5e-5)

            loss3 = self.check_weight_decay(
                place, model, use_parallel_exe=True, use_reduce=True)

            for i in range(len(loss)):
                assert np.isclose(a=loss[i], b=loss3[i], rtol=5e-5)


if __name__ == '__main__':
    unittest.main()