fpn.py 3.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

15
import numpy as np
16
import paddle
17
import paddle.fluid as fluid
18 19 20 21 22
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Layer
from paddle.nn import Conv2D
from paddle.nn.initializer import XavierUniform
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
from paddle.fluid.regularizer import L2Decay
from ppdet.core.workspace import register, serializable


@register
@serializable
class FPN(Layer):
    def __init__(self,
                 in_channels,
                 out_channel,
                 min_level=0,
                 max_level=4,
                 spatial_scale=[0.25, 0.125, 0.0625, 0.03125]):

        super(FPN, self).__init__()
        self.lateral_convs = []
        self.fpn_convs = []
        fan = out_channel * 3 * 3

        for i in range(min_level, max_level):
            if i == 3:
                lateral_name = 'fpn_inner_res5_sum'
            else:
                lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
            in_c = in_channels[i]
            lateral = self.add_sublayer(
                lateral_name,
                Conv2D(
51 52 53 54 55
                    in_channels=in_c,
                    out_channels=out_channel,
                    kernel_size=1,
                    weight_attr=ParamAttr(
                        initializer=XavierUniform(fan_out=in_c)),
56
                    bias_attr=ParamAttr(
57
                        learning_rate=2., regularizer=L2Decay(0.))))
58 59 60 61 62 63
            self.lateral_convs.append(lateral)

            fpn_name = 'fpn_res{}_sum'.format(i + 2)
            fpn_conv = self.add_sublayer(
                fpn_name,
                Conv2D(
64 65 66
                    in_channels=out_channel,
                    out_channels=out_channel,
                    kernel_size=3,
67
                    padding=1,
68 69
                    weight_attr=ParamAttr(
                        initializer=XavierUniform(fan_out=fan)),
70
                    bias_attr=ParamAttr(
71
                        learning_rate=2., regularizer=L2Decay(0.))))
72 73 74 75 76 77 78 79 80 81 82 83
            self.fpn_convs.append(fpn_conv)

        self.min_level = min_level
        self.max_level = max_level
        self.spatial_scale = spatial_scale

    def forward(self, body_feats):
        laterals = []
        for lvl in range(self.min_level, self.max_level):
            laterals.append(self.lateral_convs[lvl](body_feats[lvl]))

        for lvl in range(self.max_level - 1, self.min_level, -1):
84 85 86 87
            upsample = F.interpolate(
                laterals[lvl],
                scale_factor=2.,
                mode='nearest', )
88 89 90 91 92 93
            laterals[lvl - 1] = laterals[lvl - 1] + upsample

        fpn_output = []
        for lvl in range(self.min_level, self.max_level):
            fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))

94
        extension = F.max_pool2d(fpn_output[-1], 1, stride=2)
95 96 97 98

        spatial_scale = self.spatial_scale + [self.spatial_scale[-1] * 0.5]
        fpn_output.append(extension)
        return fpn_output, spatial_scale