optimizer.py 11.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
import sys
Q
qingqing01 已提交
20 21 22 23 24 25 26 27
import math
import paddle
import paddle.nn as nn

import paddle.optimizer as optimizer
import paddle.regularizer as regularizer

from ppdet.core.workspace import register, serializable
28
import copy
Q
qingqing01 已提交
29 30 31 32 33 34 35

__all__ = ['LearningRate', 'OptimizerBuilder']

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


36 37 38 39 40 41 42 43 44
@serializable
class CosineDecay(object):
    """
    Cosine learning rate decay

    Args:
        max_epochs (int): max epochs for the training process.
            if you commbine cosine decay with warmup, it is recommended that
            the max_iters is much larger than the warmup iter
45 46 47 48
        use_warmup (bool): whether to use warmup. Default: True.
        min_lr_ratio (float): minimum learning rate ratio. Default: 0.
        last_plateau_epochs (int): use minimum learning rate in
            the last few epochs. Default: 0.
49 50
    """

51 52 53 54 55
    def __init__(self,
                 max_epochs=1000,
                 use_warmup=True,
                 min_lr_ratio=0.,
                 last_plateau_epochs=0):
56 57
        self.max_epochs = max_epochs
        self.use_warmup = use_warmup
58 59
        self.min_lr_ratio = min_lr_ratio
        self.last_plateau_epochs = last_plateau_epochs
60 61 62 63 64 65 66 67 68

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
        assert base_lr is not None, "either base LR or values should be provided"

        max_iters = self.max_epochs * int(step_per_epoch)
69 70
        last_plateau_iters = self.last_plateau_epochs * int(step_per_epoch)
        min_lr = base_lr * self.min_lr_ratio
71
        if boundary is not None and value is not None and self.use_warmup:
72
            # use warmup
M
minghaoBD 已提交
73
            warmup_iters = len(boundary)
74 75
            for i in range(int(boundary[-1]), max_iters):
                boundary.append(i)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
                if i < max_iters - last_plateau_iters:
                    decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
                        (i - warmup_iters) * math.pi /
                        (max_iters - warmup_iters - last_plateau_iters)) + 1)
                    value.append(decayed_lr)
                else:
                    value.append(min_lr)
            return optimizer.lr.PiecewiseDecay(boundary, value)
        elif last_plateau_iters > 0:
            # not use warmup, but set `last_plateau_epochs` > 0
            boundary = []
            value = []
            for i in range(max_iters):
                if i < max_iters - last_plateau_iters:
                    decayed_lr = min_lr + (base_lr - min_lr) * 0.5 * (math.cos(
                        i * math.pi / (max_iters - last_plateau_iters)) + 1)
                    value.append(decayed_lr)
                else:
                    value.append(min_lr)
                if i > 0:
                    boundary.append(i)
97 98
            return optimizer.lr.PiecewiseDecay(boundary, value)

W
Wenyu 已提交
99
        return optimizer.lr.CosineAnnealingDecay(
100
            base_lr, T_max=max_iters, eta_min=min_lr)
101 102


Q
qingqing01 已提交
103 104 105 106 107 108 109 110 111 112
@serializable
class PiecewiseDecay(object):
    """
    Multi step learning rate decay

    Args:
        gamma (float | list): decay factor
        milestones (list): steps at which to decay learning rate
    """

113 114 115 116 117
    def __init__(self,
                 gamma=[0.1, 0.01],
                 milestones=[8, 11],
                 values=None,
                 use_warmup=True):
Q
qingqing01 已提交
118 119 120 121 122 123 124 125
        super(PiecewiseDecay, self).__init__()
        if type(gamma) is not list:
            self.gamma = []
            for i in range(len(milestones)):
                self.gamma.append(gamma / 10**i)
        else:
            self.gamma = gamma
        self.milestones = milestones
126 127
        self.values = values
        self.use_warmup = use_warmup
Q
qingqing01 已提交
128 129 130 131 132 133

    def __call__(self,
                 base_lr=None,
                 boundary=None,
                 value=None,
                 step_per_epoch=None):
134
        if boundary is not None and self.use_warmup:
Q
qingqing01 已提交
135
            boundary.extend([int(step_per_epoch) * i for i in self.milestones])
136 137 138
        else:
            # do not use LinearWarmup
            boundary = [int(step_per_epoch) * i for i in self.milestones]
G
George Ni 已提交
139
            value = [base_lr]  # during step[0, boundary[0]] is base_lr
Q
qingqing01 已提交
140

S
shangliang Xu 已提交
141
        # self.values is setted directly in config
142 143 144 145 146
        if self.values is not None:
            assert len(self.milestones) + 1 == len(self.values)
            return optimizer.lr.PiecewiseDecay(boundary, self.values)

        # value is computed by self.gamma
147 148 149
        value = value if value is not None else [base_lr]
        for i in self.gamma:
            value.append(base_lr * i)
Q
qingqing01 已提交
150 151 152 153 154 155 156 157 158 159 160 161

        return optimizer.lr.PiecewiseDecay(boundary, value)


@serializable
class LinearWarmup(object):
    """
    Warm up learning rate linearly

    Args:
        steps (int): warm up steps
        start_factor (float): initial learning rate factor
162 163
        epochs (int|None): use epochs as warm up steps, the priority
            of `epochs` is higher than `steps`. Default: None.
Q
qingqing01 已提交
164 165
    """

166
    def __init__(self, steps=500, start_factor=1. / 3, epochs=None):
Q
qingqing01 已提交
167 168 169
        super(LinearWarmup, self).__init__()
        self.steps = steps
        self.start_factor = start_factor
170
        self.epochs = epochs
Q
qingqing01 已提交
171

G
George Ni 已提交
172
    def __call__(self, base_lr, step_per_epoch):
Q
qingqing01 已提交
173 174
        boundary = []
        value = []
175 176 177 178 179
        warmup_steps = self.epochs * step_per_epoch \
            if self.epochs is not None else self.steps
        for i in range(warmup_steps + 1):
            if warmup_steps > 0:
                alpha = i / warmup_steps
180 181 182
                factor = self.start_factor * (1 - alpha) + alpha
                lr = base_lr * factor
                value.append(lr)
Q
qingqing01 已提交
183 184 185 186 187
            if i > 0:
                boundary.append(i)
        return boundary, value


G
George Ni 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
@serializable
class BurninWarmup(object):
    """
    Warm up learning rate in burnin mode
    Args:
        steps (int): warm up steps
    """

    def __init__(self, steps=1000):
        super(BurninWarmup, self).__init__()
        self.steps = steps

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        burnin = min(self.steps, step_per_epoch)
        for i in range(burnin + 1):
            factor = (i * 1.0 / burnin)**4
            lr = base_lr * factor
            value.append(lr)
            if i > 0:
                boundary.append(i)
        return boundary, value


F
Feng Ni 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
@serializable
class ExpWarmup(object):
    """
    Warm up learning rate in exponential mode
    Args:
        steps (int): warm up steps.
        epochs (int|None): use epochs as warm up steps, the priority
            of `epochs` is higher than `steps`. Default: None.
    """

    def __init__(self, steps=5, epochs=None):
        super(ExpWarmup, self).__init__()
        self.steps = steps
        self.epochs = epochs

    def __call__(self, base_lr, step_per_epoch):
        boundary = []
        value = []
        warmup_steps = self.epochs * step_per_epoch if self.epochs is not None else self.steps
        for i in range(warmup_steps + 1):
            factor = (i / float(warmup_steps))**2
            value.append(base_lr * factor)
            if i > 0:
                boundary.append(i)
        return boundary, value


Q
qingqing01 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
@register
class LearningRate(object):
    """
    Learning Rate configuration

    Args:
        base_lr (float): base learning rate
        schedulers (list): learning rate schedulers
    """
    __category__ = 'optim'

    def __init__(self,
                 base_lr=0.01,
                 schedulers=[PiecewiseDecay(), LinearWarmup()]):
        super(LearningRate, self).__init__()
        self.base_lr = base_lr
256 257 258 259 260 261 262 263 264 265 266 267
        self.schedulers = []

        schedulers = copy.deepcopy(schedulers)
        for sched in schedulers:
            if isinstance(sched, dict):
                # support dict sched instantiate
                module = sys.modules[__name__]
                type = sched.pop("name")
                scheduler = getattr(module, type)(**sched)
                self.schedulers.append(scheduler)
            else:
                self.schedulers.append(sched)
Q
qingqing01 已提交
268 269

    def __call__(self, step_per_epoch):
270 271 272 273 274
        assert len(self.schedulers) >= 1
        if not self.schedulers[0].use_warmup:
            return self.schedulers[0](base_lr=self.base_lr,
                                      step_per_epoch=step_per_epoch)

S
shangliang Xu 已提交
275
        # TODO: split warmup & decay
Q
qingqing01 已提交
276
        # warmup
G
George Ni 已提交
277
        boundary, value = self.schedulers[1](self.base_lr, step_per_epoch)
Q
qingqing01 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        # decay
        decay_lr = self.schedulers[0](self.base_lr, boundary, value,
                                      step_per_epoch)
        return decay_lr


@register
class OptimizerBuilder():
    """
    Build optimizer handles
    Args:
        regularizer (object): an `Regularizer` instance
        optimizer (object): an `Optimizer` instance
    """
    __category__ = 'optim'

    def __init__(self,
                 clip_grad_by_norm=None,
                 regularizer={'type': 'L2',
                              'factor': .0001},
                 optimizer={'type': 'Momentum',
                            'momentum': .9}):
        self.clip_grad_by_norm = clip_grad_by_norm
        self.regularizer = regularizer
        self.optimizer = optimizer

W
Wenyu 已提交
304
    def __call__(self, learning_rate, model=None):
Q
qingqing01 已提交
305
        if self.clip_grad_by_norm is not None:
W
wangxinxin08 已提交
306
            grad_clip = nn.ClipGradByGlobalNorm(
Q
qingqing01 已提交
307 308 309
                clip_norm=self.clip_grad_by_norm)
        else:
            grad_clip = None
310
        if self.regularizer and self.regularizer != 'None':
Q
qingqing01 已提交
311 312 313 314 315 316 317 318 319
            reg_type = self.regularizer['type'] + 'Decay'
            reg_factor = self.regularizer['factor']
            regularization = getattr(regularizer, reg_type)(reg_factor)
        else:
            regularization = None

        optim_args = self.optimizer.copy()
        optim_type = optim_args['type']
        del optim_args['type']
320 321
        if optim_type != 'AdamW':
            optim_args['weight_decay'] = regularization
Q
qingqing01 已提交
322
        op = getattr(optimizer, optim_type)
W
Wenyu 已提交
323

W
Wenyu 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        if 'param_groups' in optim_args:
            assert isinstance(optim_args['param_groups'], list), ''

            param_groups = optim_args.pop('param_groups')

            params, visited = [], []
            for group in param_groups:
                assert isinstance(group,
                                  dict) and 'params' in group and isinstance(
                                      group['params'], list), ''
                _params = {
                    n: p
                    for n, p in model.named_parameters()
                    if any([k in n for k in group['params']])
                }
                _group = group.copy()
                _group.update({'params': list(_params.values())})

                params.append(_group)
                visited.extend(list(_params.keys()))

            ext_params = [
                p for n, p in model.named_parameters() if n not in visited
            ]

            if len(ext_params) < len(model.parameters()):
                params.append({'params': ext_params})

            elif len(ext_params) > len(model.parameters()):
                raise RuntimeError

W
Wenyu 已提交
355 356 357
        else:
            params = model.parameters()

Q
qingqing01 已提交
358 359 360 361
        return op(learning_rate=learning_rate,
                  parameters=params,
                  grad_clip=grad_clip,
                  **optim_args)