hrnet.py 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
G
George Ni 已提交
18
from paddle.nn import AdaptiveAvgPool2D, Linear
19 20
from paddle.regularizer import L2Decay
from paddle import ParamAttr
G
George Ni 已提交
21
from paddle.nn.initializer import Normal, Uniform
22 23 24
from numbers import Integral
import math

M
Manuel Garcia 已提交
25
from ppdet.core.workspace import register
26
from ..shape_spec import ShapeSpec
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

__all__ = ['HRNet']


class ConvNormLayer(nn.Layer):
    def __init__(self,
                 ch_in,
                 ch_out,
                 filter_size,
                 stride=1,
                 norm_type='bn',
                 norm_groups=32,
                 use_dcn=False,
                 norm_decay=0.,
                 freeze_norm=False,
                 act=None,
                 name=None):
        super(ConvNormLayer, self).__init__()
        assert norm_type in ['bn', 'sync_bn', 'gn']

        self.act = act
        self.conv = nn.Conv2D(
            in_channels=ch_in,
            out_channels=ch_out,
            kernel_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2,
            groups=1,
W
wangguanzhong 已提交
55 56
            weight_attr=ParamAttr(initializer=Normal(
                mean=0., std=0.01)),
57 58 59 60 61
            bias_attr=False)

        norm_lr = 0. if freeze_norm else 1.

        param_attr = ParamAttr(
W
wangguanzhong 已提交
62
            learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
63
        bias_attr = ParamAttr(
W
wangguanzhong 已提交
64
            learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
W
wangxinxin08 已提交
65
        global_stats = True if freeze_norm else None
66
        if norm_type in ['bn', 'sync_bn']:
W
wangxinxin08 已提交
67
            self.norm = nn.BatchNorm2D(
68
                ch_out,
W
wangxinxin08 已提交
69
                weight_attr=param_attr,
70
                bias_attr=bias_attr,
W
wangguanzhong 已提交
71
                use_global_stats=global_stats)
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        elif norm_type == 'gn':
            self.norm = nn.GroupNorm(
                num_groups=norm_groups,
                num_channels=ch_out,
                weight_attr=param_attr,
                bias_attr=bias_attr)
        norm_params = self.norm.parameters()
        if freeze_norm:
            for param in norm_params:
                param.stop_gradient = True

    def forward(self, inputs):
        out = self.conv(inputs)
        out = self.norm(out)

        if self.act == 'relu':
            out = F.relu(out)
        return out


class Layer1(nn.Layer):
F
Feng Ni 已提交
93 94 95 96 97 98
    def __init__(self,
                 num_channels,
                 has_se=False,
                 norm_decay=0.,
                 freeze_norm=True,
                 name=None):
99 100 101 102 103 104 105 106 107 108 109 110 111
        super(Layer1, self).__init__()

        self.bottleneck_block_list = []

        for i in range(4):
            bottleneck_block = self.add_sublayer(
                "block_{}_{}".format(name, i + 1),
                BottleneckBlock(
                    num_channels=num_channels if i == 0 else 256,
                    num_filters=64,
                    has_se=has_se,
                    stride=1,
                    downsample=True if i == 0 else False,
F
Feng Ni 已提交
112
                    norm_decay=norm_decay,
113 114 115 116 117 118 119 120 121 122 123 124
                    freeze_norm=freeze_norm,
                    name=name + '_' + str(i + 1)))
            self.bottleneck_block_list.append(bottleneck_block)

    def forward(self, input):
        conv = input
        for block_func in self.bottleneck_block_list:
            conv = block_func(conv)
        return conv


class TransitionLayer(nn.Layer):
F
Feng Ni 已提交
125 126 127 128 129 130
    def __init__(self,
                 in_channels,
                 out_channels,
                 norm_decay=0.,
                 freeze_norm=True,
                 name=None):
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
        super(TransitionLayer, self).__init__()

        num_in = len(in_channels)
        num_out = len(out_channels)
        out = []
        self.conv_bn_func_list = []
        for i in range(num_out):
            residual = None
            if i < num_in:
                if in_channels[i] != out_channels[i]:
                    residual = self.add_sublayer(
                        "transition_{}_layer_{}".format(name, i + 1),
                        ConvNormLayer(
                            ch_in=in_channels[i],
                            ch_out=out_channels[i],
                            filter_size=3,
F
Feng Ni 已提交
147
                            norm_decay=norm_decay,
148 149 150 151 152 153 154 155 156 157 158
                            freeze_norm=freeze_norm,
                            act='relu',
                            name=name + '_layer_' + str(i + 1)))
            else:
                residual = self.add_sublayer(
                    "transition_{}_layer_{}".format(name, i + 1),
                    ConvNormLayer(
                        ch_in=in_channels[-1],
                        ch_out=out_channels[i],
                        filter_size=3,
                        stride=2,
F
Feng Ni 已提交
159
                        norm_decay=norm_decay,
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
                        freeze_norm=freeze_norm,
                        act='relu',
                        name=name + '_layer_' + str(i + 1)))
            self.conv_bn_func_list.append(residual)

    def forward(self, input):
        outs = []
        for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
            if conv_bn_func is None:
                outs.append(input[idx])
            else:
                if idx < len(input):
                    outs.append(conv_bn_func(input[idx]))
                else:
                    outs.append(conv_bn_func(input[-1]))
        return outs


class Branches(nn.Layer):
    def __init__(self,
                 block_num,
                 in_channels,
                 out_channels,
                 has_se=False,
F
Feng Ni 已提交
184
                 norm_decay=0.,
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                 freeze_norm=True,
                 name=None):
        super(Branches, self).__init__()

        self.basic_block_list = []
        for i in range(len(out_channels)):
            self.basic_block_list.append([])
            for j in range(block_num):
                in_ch = in_channels[i] if j == 0 else out_channels[i]
                basic_block_func = self.add_sublayer(
                    "bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
                    BasicBlock(
                        num_channels=in_ch,
                        num_filters=out_channels[i],
                        has_se=has_se,
F
Feng Ni 已提交
200
                        norm_decay=norm_decay,
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
                        freeze_norm=freeze_norm,
                        name=name + '_branch_layer_' + str(i + 1) + '_' +
                        str(j + 1)))
                self.basic_block_list[i].append(basic_block_func)

    def forward(self, inputs):
        outs = []
        for idx, input in enumerate(inputs):
            conv = input
            basic_block_list = self.basic_block_list[idx]
            for basic_block_func in basic_block_list:
                conv = basic_block_func(conv)
            outs.append(conv)
        return outs


class BottleneckBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se,
                 stride=1,
                 downsample=False,
F
Feng Ni 已提交
224
                 norm_decay=0.,
225 226 227 228 229 230 231 232 233 234 235
                 freeze_norm=True,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample

        self.conv1 = ConvNormLayer(
            ch_in=num_channels,
            ch_out=num_filters,
            filter_size=1,
F
Feng Ni 已提交
236
            norm_decay=norm_decay,
237 238 239 240 241 242 243 244
            freeze_norm=freeze_norm,
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvNormLayer(
            ch_in=num_filters,
            ch_out=num_filters,
            filter_size=3,
            stride=stride,
F
Feng Ni 已提交
245
            norm_decay=norm_decay,
246 247 248 249 250 251 252
            freeze_norm=freeze_norm,
            act="relu",
            name=name + "_conv2")
        self.conv3 = ConvNormLayer(
            ch_in=num_filters,
            ch_out=num_filters * 4,
            filter_size=1,
F
Feng Ni 已提交
253
            norm_decay=norm_decay,
254 255 256 257 258 259 260 261 262
            freeze_norm=freeze_norm,
            act=None,
            name=name + "_conv3")

        if self.downsample:
            self.conv_down = ConvNormLayer(
                ch_in=num_channels,
                ch_out=num_filters * 4,
                filter_size=1,
F
Feng Ni 已提交
263
                norm_decay=norm_decay,
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                freeze_norm=freeze_norm,
                act=None,
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters * 4,
                num_filters=num_filters * 4,
                reduction_ratio=16,
                name='fc' + name)

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv3 = self.se(conv3)

        y = paddle.add(x=residual, y=conv3)
        y = F.relu(y)
        return y


class BasicBlock(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride=1,
                 has_se=False,
                 downsample=False,
F
Feng Ni 已提交
299
                 norm_decay=0.,
300 301 302 303 304 305 306 307 308 309
                 freeze_norm=True,
                 name=None):
        super(BasicBlock, self).__init__()

        self.has_se = has_se
        self.downsample = downsample
        self.conv1 = ConvNormLayer(
            ch_in=num_channels,
            ch_out=num_filters,
            filter_size=3,
F
Feng Ni 已提交
310
            norm_decay=norm_decay,
311 312 313 314 315 316 317 318
            freeze_norm=freeze_norm,
            stride=stride,
            act="relu",
            name=name + "_conv1")
        self.conv2 = ConvNormLayer(
            ch_in=num_filters,
            ch_out=num_filters,
            filter_size=3,
F
Feng Ni 已提交
319
            norm_decay=norm_decay,
320 321 322 323 324 325 326 327 328 329
            freeze_norm=freeze_norm,
            stride=1,
            act=None,
            name=name + "_conv2")

        if self.downsample:
            self.conv_down = ConvNormLayer(
                ch_in=num_channels,
                ch_out=num_filters * 4,
                filter_size=1,
F
Feng Ni 已提交
330
                norm_decay=norm_decay,
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
                freeze_norm=freeze_norm,
                act=None,
                name=name + "_downsample")

        if self.has_se:
            self.se = SELayer(
                num_channels=num_filters,
                num_filters=num_filters,
                reduction_ratio=16,
                name='fc' + name)

    def forward(self, input):
        residual = input
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)

        if self.downsample:
            residual = self.conv_down(input)

        if self.has_se:
            conv2 = self.se(conv2)

        y = paddle.add(x=residual, y=conv2)
        y = F.relu(y)
        return y


class SELayer(nn.Layer):
    def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
        super(SELayer, self).__init__()

        self.pool2d_gap = AdaptiveAvgPool2D(1)

        self._num_channels = num_channels

        med_ch = int(num_channels / reduction_ratio)
        stdv = 1.0 / math.sqrt(num_channels * 1.0)
        self.squeeze = Linear(
            num_channels,
            med_ch,
W
wangguanzhong 已提交
371
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
372 373 374 375 376

        stdv = 1.0 / math.sqrt(med_ch * 1.0)
        self.excitation = Linear(
            med_ch,
            num_filters,
W
wangguanzhong 已提交
377
            weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

    def forward(self, input):
        pool = self.pool2d_gap(input)
        pool = paddle.squeeze(pool, axis=[2, 3])
        squeeze = self.squeeze(pool)
        squeeze = F.relu(squeeze)
        excitation = self.excitation(squeeze)
        excitation = F.sigmoid(excitation)
        excitation = paddle.unsqueeze(excitation, axis=[2, 3])
        out = input * excitation
        return out


class Stage(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_modules,
                 num_filters,
                 has_se=False,
F
Feng Ni 已提交
397
                 norm_decay=0.,
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
                 freeze_norm=True,
                 multi_scale_output=True,
                 name=None):
        super(Stage, self).__init__()

        self._num_modules = num_modules
        self.stage_func_list = []
        for i in range(num_modules):
            if i == num_modules - 1 and not multi_scale_output:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
F
Feng Ni 已提交
413
                        norm_decay=norm_decay,
414 415 416 417 418 419 420 421 422 423
                        freeze_norm=freeze_norm,
                        multi_scale_output=False,
                        name=name + '_' + str(i + 1)))
            else:
                stage_func = self.add_sublayer(
                    "stage_{}_{}".format(name, i + 1),
                    HighResolutionModule(
                        num_channels=num_channels,
                        num_filters=num_filters,
                        has_se=has_se,
F
Feng Ni 已提交
424
                        norm_decay=norm_decay,
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
                        freeze_norm=freeze_norm,
                        name=name + '_' + str(i + 1)))

            self.stage_func_list.append(stage_func)

    def forward(self, input):
        out = input
        for idx in range(self._num_modules):
            out = self.stage_func_list[idx](out)
        return out


class HighResolutionModule(nn.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 has_se=False,
                 multi_scale_output=True,
F
Feng Ni 已提交
443
                 norm_decay=0.,
444 445 446 447 448 449 450 451
                 freeze_norm=True,
                 name=None):
        super(HighResolutionModule, self).__init__()
        self.branches_func = Branches(
            block_num=4,
            in_channels=num_channels,
            out_channels=num_filters,
            has_se=has_se,
F
Feng Ni 已提交
452
            norm_decay=norm_decay,
453 454 455 456 457 458 459
            freeze_norm=freeze_norm,
            name=name)

        self.fuse_func = FuseLayers(
            in_channels=num_filters,
            out_channels=num_filters,
            multi_scale_output=multi_scale_output,
F
Feng Ni 已提交
460
            norm_decay=norm_decay,
461 462 463 464 465 466 467 468 469 470 471 472 473 474
            freeze_norm=freeze_norm,
            name=name)

    def forward(self, input):
        out = self.branches_func(input)
        out = self.fuse_func(out)
        return out


class FuseLayers(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 multi_scale_output=True,
F
Feng Ni 已提交
475
                 norm_decay=0.,
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
                 freeze_norm=True,
                 name=None):
        super(FuseLayers, self).__init__()

        self._actual_ch = len(in_channels) if multi_scale_output else 1
        self._in_channels = in_channels

        self.residual_func_list = []
        for i in range(self._actual_ch):
            for j in range(len(in_channels)):
                residual_func = None
                if j > i:
                    residual_func = self.add_sublayer(
                        "residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
                        ConvNormLayer(
                            ch_in=in_channels[j],
                            ch_out=out_channels[i],
                            filter_size=1,
                            stride=1,
                            act=None,
F
Feng Ni 已提交
496
                            norm_decay=norm_decay,
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                            freeze_norm=freeze_norm,
                            name=name + '_layer_' + str(i + 1) + '_' +
                            str(j + 1)))
                    self.residual_func_list.append(residual_func)
                elif j < i:
                    pre_num_filters = in_channels[j]
                    for k in range(i - j):
                        if k == i - j - 1:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvNormLayer(
                                    ch_in=pre_num_filters,
                                    ch_out=out_channels[i],
                                    filter_size=3,
                                    stride=2,
F
Feng Ni 已提交
513
                                    norm_decay=norm_decay,
514 515 516 517 518 519 520 521 522 523 524 525 526 527
                                    freeze_norm=freeze_norm,
                                    act=None,
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[i]
                        else:
                            residual_func = self.add_sublayer(
                                "residual_{}_layer_{}_{}_{}".format(
                                    name, i + 1, j + 1, k + 1),
                                ConvNormLayer(
                                    ch_in=pre_num_filters,
                                    ch_out=out_channels[j],
                                    filter_size=3,
                                    stride=2,
F
Feng Ni 已提交
528
                                    norm_decay=norm_decay,
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
                                    freeze_norm=freeze_norm,
                                    act="relu",
                                    name=name + '_layer_' + str(i + 1) + '_' +
                                    str(j + 1) + '_' + str(k + 1)))
                            pre_num_filters = out_channels[j]
                        self.residual_func_list.append(residual_func)

    def forward(self, input):
        outs = []
        residual_func_idx = 0
        for i in range(self._actual_ch):
            residual = input[i]
            for j in range(len(self._in_channels)):
                if j > i:
                    y = self.residual_func_list[residual_func_idx](input[j])
                    residual_func_idx += 1
                    y = F.interpolate(y, scale_factor=2**(j - i))
                    residual = paddle.add(x=residual, y=y)
                elif j < i:
                    y = input[j]
                    for k in range(i - j):
                        y = self.residual_func_list[residual_func_idx](y)
                        residual_func_idx += 1

                    residual = paddle.add(x=residual, y=y)
            residual = F.relu(residual)
            outs.append(residual)

        return outs


@register
class HRNet(nn.Layer):
    """
    HRNet, see https://arxiv.org/abs/1908.07919

    Args:
        width (int): the width of HRNet
        has_se (bool): whether to add SE block for each stage
        freeze_at (int): the stage to freeze
        freeze_norm (bool): whether to freeze norm in HRNet
F
Feng Ni 已提交
570
        norm_decay (float): weight decay for normalization layer weights
571
        return_idx (List): the stage to return
F
Feng Ni 已提交
572
        upsample (bool): whether to upsample and concat the backbone feats
573 574 575 576 577 578 579 580
    """

    def __init__(self,
                 width=18,
                 has_se=False,
                 freeze_at=0,
                 freeze_norm=True,
                 norm_decay=0.,
F
Feng Ni 已提交
581 582
                 return_idx=[0, 1, 2, 3],
                 upsample=False):
583 584 585 586 587 588 589 590 591 592
        super(HRNet, self).__init__()

        self.width = width
        self.has_se = has_se
        if isinstance(return_idx, Integral):
            return_idx = [return_idx]

        assert len(return_idx) > 0, "need one or more return index"
        self.freeze_at = freeze_at
        self.return_idx = return_idx
F
Feng Ni 已提交
593
        self.upsample = upsample
594 595 596 597 598 599 600 601 602 603 604 605 606 607

        self.channels = {
            18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
            30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
            32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
            40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
            44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
            48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
            60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
            64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
        }

        channels_2, channels_3, channels_4 = self.channels[width]
        num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
F
Feng Ni 已提交
608 609
        self._out_channels = [sum(channels_4)] if self.upsample else channels_4
        self._out_strides = [4] if self.upsample else [4, 8, 16, 32]
610 611 612 613 614 615

        self.conv_layer1_1 = ConvNormLayer(
            ch_in=3,
            ch_out=64,
            filter_size=3,
            stride=2,
F
Feng Ni 已提交
616
            norm_decay=norm_decay,
617 618 619 620 621 622 623 624 625
            freeze_norm=freeze_norm,
            act='relu',
            name="layer1_1")

        self.conv_layer1_2 = ConvNormLayer(
            ch_in=64,
            ch_out=64,
            filter_size=3,
            stride=2,
F
Feng Ni 已提交
626
            norm_decay=norm_decay,
627 628 629 630 631 632 633
            freeze_norm=freeze_norm,
            act='relu',
            name="layer1_2")

        self.la1 = Layer1(
            num_channels=64,
            has_se=has_se,
F
Feng Ni 已提交
634
            norm_decay=norm_decay,
635 636 637 638 639 640
            freeze_norm=freeze_norm,
            name="layer2")

        self.tr1 = TransitionLayer(
            in_channels=[256],
            out_channels=channels_2,
F
Feng Ni 已提交
641
            norm_decay=norm_decay,
642 643 644 645 646 647 648 649
            freeze_norm=freeze_norm,
            name="tr1")

        self.st2 = Stage(
            num_channels=channels_2,
            num_modules=num_modules_2,
            num_filters=channels_2,
            has_se=self.has_se,
F
Feng Ni 已提交
650
            norm_decay=norm_decay,
651 652 653 654 655 656
            freeze_norm=freeze_norm,
            name="st2")

        self.tr2 = TransitionLayer(
            in_channels=channels_2,
            out_channels=channels_3,
F
Feng Ni 已提交
657
            norm_decay=norm_decay,
658 659 660 661 662 663 664 665
            freeze_norm=freeze_norm,
            name="tr2")

        self.st3 = Stage(
            num_channels=channels_3,
            num_modules=num_modules_3,
            num_filters=channels_3,
            has_se=self.has_se,
F
Feng Ni 已提交
666
            norm_decay=norm_decay,
667 668 669 670 671 672
            freeze_norm=freeze_norm,
            name="st3")

        self.tr3 = TransitionLayer(
            in_channels=channels_3,
            out_channels=channels_4,
F
Feng Ni 已提交
673
            norm_decay=norm_decay,
674 675 676 677 678 679 680
            freeze_norm=freeze_norm,
            name="tr3")
        self.st4 = Stage(
            num_channels=channels_4,
            num_modules=num_modules_4,
            num_filters=channels_4,
            has_se=self.has_se,
F
Feng Ni 已提交
681
            norm_decay=norm_decay,
682
            freeze_norm=freeze_norm,
683
            multi_scale_output=len(return_idx) > 1,
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
            name="st4")

    def forward(self, inputs):
        x = inputs['image']
        conv1 = self.conv_layer1_1(x)
        conv2 = self.conv_layer1_2(conv1)

        la1 = self.la1(conv2)
        tr1 = self.tr1([la1])
        st2 = self.st2(tr1)
        tr2 = self.tr2(st2)

        st3 = self.st3(tr2)
        tr3 = self.tr3(st3)

        st4 = self.st4(tr3)

F
Feng Ni 已提交
701 702 703 704 705 706 707 708 709
        if self.upsample:
            # Upsampling
            x0_h, x0_w = st4[0].shape[2:4]
            x1 = F.upsample(st4[1], size=(x0_h, x0_w), mode='bilinear')
            x2 = F.upsample(st4[2], size=(x0_h, x0_w), mode='bilinear')
            x3 = F.upsample(st4[3], size=(x0_h, x0_w), mode='bilinear')
            x = paddle.concat([st4[0], x1, x2, x3], 1)
            return x

710 711 712 713 714 715 716 717
        res = []
        for i, layer in enumerate(st4):
            if i == self.freeze_at:
                layer.stop_gradient = True
            if i in self.return_idx:
                res.append(layer)

        return res
718 719 720

    @property
    def out_shape(self):
F
Feng Ni 已提交
721 722
        if self.upsample:
            self.return_idx = [0]
723 724 725 726 727
        return [
            ShapeSpec(
                channels=self._out_channels[i], stride=self._out_strides[i])
            for i in self.return_idx
        ]