metrics.py 15.9 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import json
import paddle
import numpy as np
M
Mark Ma 已提交
24
import typing
K
Kaipeng Deng 已提交
25 26 27

from .map_utils import prune_zero_padding, DetectionMAP
from .coco_utils import get_infer_results, cocoapi_eval
28
from .widerface_utils import face_eval_run
K
Kaipeng Deng 已提交
29
from ppdet.data.source.category import get_categories
K
Kaipeng Deng 已提交
30 31 32 33

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

34
__all__ = [
35 36 37 38 39 40
    'Metric',
    'COCOMetric',
    'VOCMetric',
    'WiderFaceMetric',
    'get_infer_results',
    'RBoxMetric',
41
    'SNIPERCOCOMetric'
42
]
K
Kaipeng Deng 已提交
43

44 45 46 47 48 49 50 51
COCO_SIGMAS = np.array([
    .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87,
    .89, .89
]) / 10.0
CROWD_SIGMAS = np.array(
    [.79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89, .79,
     .79]) / 10.0

K
Kaipeng Deng 已提交
52 53 54 55 56

class Metric(paddle.metric.Metric):
    def name(self):
        return self.__class__.__name__

57 58 59 60 61 62
    def reset(self):
        pass

    def accumulate(self):
        pass

K
Kaipeng Deng 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75
    # paddle.metric.Metric defined :metch:`update`, :meth:`accumulate`
    # :metch:`reset`, in ppdet, we also need following 2 methods:

    # abstract method for logging metric results
    def log(self):
        pass

    # abstract method for getting metric results
    def get_results(self):
        pass


class COCOMetric(Metric):
W
wangxinxin08 已提交
76
    def __init__(self, anno_file, **kwargs):
K
Kaipeng Deng 已提交
77 78 79
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        self.anno_file = anno_file
K
Kaipeng Deng 已提交
80 81 82
        self.clsid2catid = kwargs.get('clsid2catid', None)
        if self.clsid2catid is None:
            self.clsid2catid, _ = get_categories('COCO', anno_file)
83
        self.classwise = kwargs.get('classwise', False)
S
shangliang Xu 已提交
84
        self.output_eval = kwargs.get('output_eval', None)
W
wangxinxin08 已提交
85 86
        # TODO: bias should be unified
        self.bias = kwargs.get('bias', 0)
87
        self.save_prediction_only = kwargs.get('save_prediction_only', False)
88
        self.iou_type = kwargs.get('IouType', 'bbox')
K
Kaipeng Deng 已提交
89 90 91 92
        self.reset()

    def reset(self):
        # only bbox and mask evaluation support currently
93
        self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
K
Kaipeng Deng 已提交
94 95 96 97 98 99 100 101
        self.eval_results = {}

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

M
Mark Ma 已提交
102 103 104 105 106
        # multi-scale inputs: all inputs have same im_id
        if isinstance(inputs, typing.Sequence):
            im_id = inputs[0]['im_id']
        else:
            im_id = inputs['im_id']
107 108
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id
K
Kaipeng Deng 已提交
109

W
wangxinxin08 已提交
110 111
        infer_results = get_infer_results(
            outs, self.clsid2catid, bias=self.bias)
K
Kaipeng Deng 已提交
112 113 114 115
        self.results['bbox'] += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        self.results['mask'] += infer_results[
            'mask'] if 'mask' in infer_results else []
G
Guanghua Yu 已提交
116 117
        self.results['segm'] += infer_results[
            'segm'] if 'segm' in infer_results else []
118 119
        self.results['keypoint'] += infer_results[
            'keypoint'] if 'keypoint' in infer_results else []
K
Kaipeng Deng 已提交
120 121 122

    def accumulate(self):
        if len(self.results['bbox']) > 0:
S
shangliang Xu 已提交
123 124 125 126
            output = "bbox.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
127 128 129
                json.dump(self.results['bbox'], f)
                logger.info('The bbox result is saved to bbox.json.')

130 131 132 133 134 135 136 137 138 139 140
            if self.save_prediction_only:
                logger.info('The bbox result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                bbox_stats = cocoapi_eval(
                    output,
                    'bbox',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['bbox'] = bbox_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
141 142

        if len(self.results['mask']) > 0:
S
shangliang Xu 已提交
143 144 145 146
            output = "mask.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
K
Kaipeng Deng 已提交
147 148 149
                json.dump(self.results['mask'], f)
                logger.info('The mask result is saved to mask.json.')

150 151 152 153 154 155 156 157 158 159 160
            if self.save_prediction_only:
                logger.info('The mask result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
K
Kaipeng Deng 已提交
161

G
Guanghua Yu 已提交
162
        if len(self.results['segm']) > 0:
S
shangliang Xu 已提交
163 164 165 166
            output = "segm.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
G
Guanghua Yu 已提交
167 168 169
                json.dump(self.results['segm'], f)
                logger.info('The segm result is saved to segm.json.')

170 171 172 173 174 175 176 177 178 179 180
            if self.save_prediction_only:
                logger.info('The segm result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                seg_stats = cocoapi_eval(
                    output,
                    'segm',
                    anno_file=self.anno_file,
                    classwise=self.classwise)
                self.eval_results['mask'] = seg_stats
                sys.stdout.flush()
G
Guanghua Yu 已提交
181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
        if len(self.results['keypoint']) > 0:
            output = "keypoint.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
                json.dump(self.results['keypoint'], f)
                logger.info('The keypoint result is saved to keypoint.json.')

            if self.save_prediction_only:
                logger.info('The keypoint result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                style = 'keypoints'
                use_area = True
                sigmas = COCO_SIGMAS
                if self.iou_type == 'keypoints_crowd':
                    style = 'keypoints_crowd'
                    use_area = False
                    sigmas = CROWD_SIGMAS
                keypoint_stats = cocoapi_eval(
                    output,
                    style,
                    anno_file=self.anno_file,
                    classwise=self.classwise,
                    sigmas=sigmas,
                    use_area=use_area)
                self.eval_results['keypoint'] = keypoint_stats
                sys.stdout.flush()

K
Kaipeng Deng 已提交
211 212 213 214 215 216 217 218 219
    def log(self):
        pass

    def get_results(self):
        return self.eval_results


class VOCMetric(Metric):
    def __init__(self,
220
                 label_list,
K
Kaipeng Deng 已提交
221 222 223 224
                 class_num=20,
                 overlap_thresh=0.5,
                 map_type='11point',
                 is_bbox_normalized=False,
225 226 227 228 229
                 evaluate_difficult=False,
                 classwise=False):
        assert os.path.isfile(label_list), \
                "label_list {} not a file".format(label_list)
        self.clsid2catid, self.catid2name = get_categories('VOC', label_list)
K
Kaipeng Deng 已提交
230 231 232 233 234 235 236 237 238

        self.overlap_thresh = overlap_thresh
        self.map_type = map_type
        self.evaluate_difficult = evaluate_difficult
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=overlap_thresh,
            map_type=map_type,
            is_bbox_normalized=is_bbox_normalized,
239 240 241
            evaluate_difficult=evaluate_difficult,
            catid2name=self.catid2name,
            classwise=classwise)
K
Kaipeng Deng 已提交
242 243 244 245 246 247 248

        self.reset()

    def reset(self):
        self.detection_map.reset()

    def update(self, inputs, outputs):
W
wangguanzhong 已提交
249 250 251 252
        bbox_np = outputs['bbox'].numpy()
        bboxes = bbox_np[:, 2:]
        scores = bbox_np[:, 1]
        labels = bbox_np[:, 0]
K
Kaipeng Deng 已提交
253 254 255 256
        bbox_lengths = outputs['bbox_num'].numpy()

        if bboxes.shape == (1, 1) or bboxes is None:
            return
W
wangguanzhong 已提交
257 258 259
        gt_boxes = inputs['gt_bbox']
        gt_labels = inputs['gt_class']
        difficults = inputs['difficult'] if not self.evaluate_difficult \
K
Kaipeng Deng 已提交
260 261 262 263 264 265 266
                            else None

        scale_factor = inputs['scale_factor'].numpy(
        ) if 'scale_factor' in inputs else np.ones(
            (gt_boxes.shape[0], 2)).astype('float32')

        bbox_idx = 0
W
wangguanzhong 已提交
267 268
        for i in range(len(gt_boxes)):
            gt_box = gt_boxes[i].numpy()
K
Kaipeng Deng 已提交
269 270
            h, w = scale_factor[i]
            gt_box = gt_box / np.array([w, h, w, h])
W
wangguanzhong 已提交
271
            gt_label = gt_labels[i].numpy()
K
Kaipeng Deng 已提交
272
            difficult = None if difficults is None \
W
wangguanzhong 已提交
273
                            else difficults[i].numpy()
K
Kaipeng Deng 已提交
274 275
            bbox_num = bbox_lengths[i]
            bbox = bboxes[bbox_idx:bbox_idx + bbox_num]
276 277
            score = scores[bbox_idx:bbox_idx + bbox_num]
            label = labels[bbox_idx:bbox_idx + bbox_num]
K
Kaipeng Deng 已提交
278 279
            gt_box, gt_label, difficult = prune_zero_padding(gt_box, gt_label,
                                                             difficult)
280 281
            self.detection_map.update(bbox, score, label, gt_box, gt_label,
                                      difficult)
K
Kaipeng Deng 已提交
282 283 284 285 286 287 288 289 290 291 292 293
            bbox_idx += bbox_num

    def accumulate(self):
        logger.info("Accumulating evaluatation results...")
        self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
294
        return {'bbox': [self.detection_map.get_map()]}
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312


class WiderFaceMetric(Metric):
    def __init__(self, image_dir, anno_file, multi_scale=True):
        self.image_dir = image_dir
        self.anno_file = anno_file
        self.multi_scale = multi_scale
        self.clsid2catid, self.catid2name = get_categories('widerface')

    def update(self, model):

        face_eval_run(
            model,
            self.image_dir,
            self.anno_file,
            pred_dir='output/pred',
            eval_mode='widerface',
            multi_scale=self.multi_scale)
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403


class RBoxMetric(Metric):
    def __init__(self, anno_file, **kwargs):
        assert os.path.isfile(anno_file), \
                "anno_file {} not a file".format(anno_file)
        assert os.path.exists(anno_file), "anno_file {} not exists".format(
            anno_file)
        self.anno_file = anno_file
        self.gt_anno = json.load(open(self.anno_file))
        cats = self.gt_anno['categories']
        self.clsid2catid = {i: cat['id'] for i, cat in enumerate(cats)}
        self.catid2clsid = {cat['id']: i for i, cat in enumerate(cats)}
        self.catid2name = {cat['id']: cat['name'] for cat in cats}
        self.classwise = kwargs.get('classwise', False)
        self.output_eval = kwargs.get('output_eval', None)
        # TODO: bias should be unified
        self.bias = kwargs.get('bias', 0)
        self.save_prediction_only = kwargs.get('save_prediction_only', False)
        self.iou_type = kwargs.get('IouType', 'bbox')
        self.overlap_thresh = kwargs.get('overlap_thresh', 0.5)
        self.map_type = kwargs.get('map_type', '11point')
        self.evaluate_difficult = kwargs.get('evaluate_difficult', False)
        class_num = len(self.catid2name)
        self.detection_map = DetectionMAP(
            class_num=class_num,
            overlap_thresh=self.overlap_thresh,
            map_type=self.map_type,
            is_bbox_normalized=False,
            evaluate_difficult=self.evaluate_difficult,
            catid2name=self.catid2name,
            classwise=self.classwise)

        self.reset()

    def reset(self):
        self.result_bbox = []
        self.detection_map.reset()

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id

        infer_results = get_infer_results(
            outs, self.clsid2catid, bias=self.bias)
        self.result_bbox += infer_results[
            'bbox'] if 'bbox' in infer_results else []
        bbox = [b['bbox'] for b in self.result_bbox]
        score = [b['score'] for b in self.result_bbox]
        label = [b['category_id'] for b in self.result_bbox]
        label = [self.catid2clsid[e] for e in label]
        gt_box = [
            e['bbox'] for e in self.gt_anno['annotations']
            if e['image_id'] == outs['im_id']
        ]
        gt_label = [
            e['category_id'] for e in self.gt_anno['annotations']
            if e['image_id'] == outs['im_id']
        ]
        gt_label = [self.catid2clsid[e] for e in gt_label]
        self.detection_map.update(bbox, score, label, gt_box, gt_label)

    def accumulate(self):
        if len(self.result_bbox) > 0:
            output = "bbox.json"
            if self.output_eval:
                output = os.path.join(self.output_eval, output)
            with open(output, 'w') as f:
                json.dump(self.result_bbox, f)
                logger.info('The bbox result is saved to bbox.json.')

            if self.save_prediction_only:
                logger.info('The bbox result is saved to {} and do not '
                            'evaluate the mAP.'.format(output))
            else:
                logger.info("Accumulating evaluatation results...")
                self.detection_map.accumulate()

    def log(self):
        map_stat = 100. * self.detection_map.get_map()
        logger.info("mAP({:.2f}, {}) = {:.2f}%".format(self.overlap_thresh,
                                                       self.map_type, map_stat))

    def get_results(self):
        return {'bbox': [self.detection_map.get_map()]}
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437


class SNIPERCOCOMetric(COCOMetric):
    def __init__(self, anno_file, **kwargs):
        super(SNIPERCOCOMetric, self).__init__(anno_file, **kwargs)
        self.dataset = kwargs["dataset"]
        self.chip_results = []

    def reset(self):
        # only bbox and mask evaluation support currently
        self.results = {'bbox': [], 'mask': [], 'segm': [], 'keypoint': []}
        self.eval_results = {}
        self.chip_results = []

    def update(self, inputs, outputs):
        outs = {}
        # outputs Tensor -> numpy.ndarray
        for k, v in outputs.items():
            outs[k] = v.numpy() if isinstance(v, paddle.Tensor) else v

        im_id = inputs['im_id']
        outs['im_id'] = im_id.numpy() if isinstance(im_id,
                                                    paddle.Tensor) else im_id

        self.chip_results.append(outs)


    def accumulate(self):
        results = self.dataset.anno_cropper.aggregate_chips_detections(self.chip_results)
        for outs in results:
            infer_results = get_infer_results(outs, self.clsid2catid, bias=self.bias)
            self.results['bbox'] += infer_results['bbox'] if 'bbox' in infer_results else []

        super(SNIPERCOCOMetric, self).accumulate()