position_encoding.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn

from ppdet.core.workspace import register, serializable


@register
@serializable
class PositionEmbedding(nn.Layer):
    def __init__(self,
                 num_pos_feats=128,
                 temperature=10000,
                 normalize=True,
                 scale=None,
                 embed_type='sine',
35 36
                 num_embeddings=50,
                 offset=0.):
37 38 39 40
        super(PositionEmbedding, self).__init__()
        assert embed_type in ['sine', 'learned']

        self.embed_type = embed_type
41 42
        self.offset = offset
        self.eps = 1e-6
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
        if self.embed_type == 'sine':
            self.num_pos_feats = num_pos_feats
            self.temperature = temperature
            self.normalize = normalize
            if scale is not None and normalize is False:
                raise ValueError("normalize should be True if scale is passed")
            if scale is None:
                scale = 2 * math.pi
            self.scale = scale
        elif self.embed_type == 'learned':
            self.row_embed = nn.Embedding(num_embeddings, num_pos_feats)
            self.col_embed = nn.Embedding(num_embeddings, num_pos_feats)
        else:
            raise ValueError(f"not supported {self.embed_type}")

    def forward(self, mask):
        """
        Args:
            mask (Tensor): [B, H, W]
        Returns:
            pos (Tensor): [B, C, H, W]
        """
        assert mask.dtype == paddle.bool
        if self.embed_type == 'sine':
            mask = mask.astype('float32')
            y_embed = mask.cumsum(1, dtype='float32')
            x_embed = mask.cumsum(2, dtype='float32')
            if self.normalize:
71 72 73 74
                y_embed = (y_embed + self.offset) / (
                    y_embed[:, -1:, :] + self.eps) * self.scale
                x_embed = (x_embed + self.offset) / (
                    x_embed[:, :, -1:] + self.eps) * self.scale
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

            dim_t = 2 * (paddle.arange(self.num_pos_feats) //
                         2).astype('float32')
            dim_t = self.temperature**(dim_t / self.num_pos_feats)

            pos_x = x_embed.unsqueeze(-1) / dim_t
            pos_y = y_embed.unsqueeze(-1) / dim_t
            pos_x = paddle.stack(
                (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
                axis=4).flatten(3)
            pos_y = paddle.stack(
                (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
                axis=4).flatten(3)
            pos = paddle.concat((pos_y, pos_x), axis=3).transpose([0, 3, 1, 2])
            return pos
        elif self.embed_type == 'learned':
            h, w = mask.shape[-2:]
            i = paddle.arange(w)
            j = paddle.arange(h)
            x_emb = self.col_embed(i)
            y_emb = self.row_embed(j)
            pos = paddle.concat(
                [
                    x_emb.unsqueeze(0).repeat(h, 1, 1),
                    y_emb.unsqueeze(1).repeat(1, w, 1),
                ],
                axis=-1).transpose([2, 0, 1]).unsqueeze(0).tile(mask.shape[0],
                                                                1, 1, 1)
            return pos
        else:
            raise ValueError(f"not supported {self.embed_type}")