light_api.h 3.3 KB
Newer Older
S
Superjomn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*
 * This file implements a light-weight API which can run on mobile. We limit the
 * dependencies and the runtime computation complexity.
 */
#pragma once

#include <string>
#include <vector>
#include "paddle/fluid/lite/core/program.h"
#include "paddle/fluid/lite/core/types.h"
#include "paddle/fluid/lite/model_parser/model_parser.h"
#include "paddle/fluid/lite/model_parser/pb/op_desc.h"

namespace paddle {
namespace lite {

31
class LightPredictor {
S
Superjomn 已提交
32
 public:
33
  LightPredictor() { scope_ = std::make_shared<Scope>(); }
S
Superjomn 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

  void Build(const std::string& model_dir) {
    framework::proto::ProgramDesc desc;
    LoadModel(model_dir, scope_.get(), &desc);
    BuildRuntimeProgram(desc);
  }

  void Run() { program_->Run(); }

  // Get offset-th col of feed.
  Tensor* GetInput(size_t offset) {
    auto* _feed_list = program_->exec_scope()->FindVar("feed");
    CHECK(_feed_list) << "no feed variable in exec_scope";
    auto* feed_list = _feed_list->GetMutable<std::vector<Tensor>>();
    if (offset >= feed_list->size()) {
      feed_list->resize(offset + 1);
    }
    return &feed_list->at(offset);
  }

  const Tensor* GetOutput(size_t offset) {
    auto* _fetch_list = program_->exec_scope()->FindVar("fetch");
    CHECK(_fetch_list) << "no fatch variable in exec_scope";
    auto& fetch_list = *_fetch_list->GetMutable<std::vector<lite::Tensor>>();
    CHECK_LT(offset, fetch_list.size()) << "offset " << offset << " overflow";
    return &fetch_list.at(offset);
  }

 private:
  void BuildRuntimeProgram(const framework::proto::ProgramDesc& prog) {
    std::vector<Instruct> insts;
    // 1. Create op first
    Program program(prog, scope_, {});

    // 2. Create Instructs

    // Create the kernels of the target places, and filter out the specific
    // kernel with the target alias.
    for (auto& op : program.ops) {
      lite::pb::OpDesc desc(op->op_info()->desc());
      auto kernel_type = desc.GetAttr(kKernelTypeAttr).get<std::string>();
      std::string op_type, alias;
      Place place;
      KernelBase::ParseKernelType(kernel_type, &op_type, &alias, &place);
      auto kernels = op->CreateKernels({place});
      // filter out a kernel
      auto it = std::find_if(kernels.begin(), kernels.end(),
                             [&](std::unique_ptr<KernelBase>& it) {
                               return it->alias() == alias;
                             });
      CHECK(it != kernels.end());
      insts.emplace_back(op, std::move(*it));
    }
    program_.reset(new RuntimeProgram(std::move(insts)));
    CHECK(program.exec_scope);
    program_->set_exec_scope(program.exec_scope);
  }

 private:
  std::shared_ptr<Scope> scope_;
  std::unique_ptr<RuntimeProgram> program_;
};

}  // namespace lite
}  // namespace paddle