test_sequence_expand.py 4.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wanghaoshuang 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


W
wanghaoshuang 已提交
20
class TestSequenceExpand(OpTest):
W
wanghaoshuang 已提交
21
    def set_data(self):
D
dzhwinter 已提交
22 23
        x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32')
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
24
        y_lod = [[1, 3, 4]]
W
wanghaoshuang 已提交
25
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
W
wanghaoshuang 已提交
26 27

    def compute(self):
W
wanghaoshuang 已提交
28 29
        x = self.inputs['X']
        x_data, x_lod = x if type(x) == tuple else (x, None)
W
wanghaoshuang 已提交
30
        y_data, y_lod = self.inputs['Y']
Y
yangyaming 已提交
31 32 33 34 35 36 37 38 39

        if hasattr(self, 'attrs'):
            ref_level = self.attrs['ref_level']
        else:
            ref_level = len(y_lod) - 1

        out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype)

        if x_lod is None:
40 41
            # x_idx = [i for i in xrange(x_data.shape[0] + 1)]
            x_idx = [1] * x_data.shape[0]
Y
yangyaming 已提交
42 43
        else:
            x_idx = x_lod[0]
44 45 46 47 48 49
            out_lod = [[]]

        offset = 0
        for i in xrange(len(y_lod[ref_level])):
            repeat_num = y_lod[ref_level][i]
            x_len = x_idx[i]
Y
yangyaming 已提交
50 51

            if repeat_num > 0:
52
                x_sub = x_data[offset:(offset + x_len), :]
D
dzhwinter 已提交
53 54 55 56
                stacked_x_sub = x_sub
                for r in range(repeat_num - 1):
                    stacked_x_sub = np.vstack((stacked_x_sub, x_sub))
                out = np.vstack((out, stacked_x_sub))
Y
yangyaming 已提交
57 58
                if x_lod is not None:
                    for j in xrange(repeat_num):
59 60
                        out_lod[0].append(x_len)
            offset += x_len
Y
yangyaming 已提交
61 62 63 64 65

        if x_lod is None:
            self.outputs = {'Out': out}
        else:
            self.outputs = {'Out': (out, out_lod)}
W
wanghaoshuang 已提交
66 67

    def setUp(self):
W
wanghaoshuang 已提交
68
        self.op_type = 'sequence_expand'
W
wanghaoshuang 已提交
69 70 71 72 73 74
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

W
wanghaoshuang 已提交
75 76
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
W
wanghaoshuang 已提交
77 78


W
wanghaoshuang 已提交
79
class TestSequenceExpandCase1(TestSequenceExpand):
W
wanghaoshuang 已提交
80 81
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
82
        x_lod = [[2, 3]]
W
wanghaoshuang 已提交
83
        y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32')
84
        y_lod = [[2, 3], [2, 2, 3, 3, 3]]
Y
yangyaming 已提交
85 86
        self.inputs = {'X': x_data, 'Y': (y_data, y_lod)}
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
87 88


W
wanghaoshuang 已提交
89
class TestSequenceExpandCase2(TestSequenceExpand):
W
wanghaoshuang 已提交
90 91
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32')
92
        x_lod = [[1]]
W
wanghaoshuang 已提交
93
        y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32')
94
        y_lod = [[2], [1, 1]]
W
wanghaoshuang 已提交
95
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}
Y
yangyaming 已提交
96
        self.attrs = {'ref_level': 0}
W
wanghaoshuang 已提交
97 98


W
wanghaoshuang 已提交
99
class TestSequenceExpandCase3(TestSequenceExpand):
W
wanghaoshuang 已提交
100 101
    def set_data(self):
        x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32')
102 103 104
        x_lod = [[1, 1, 1, 1]]
        y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32')
        y_lod = [[2, 2, 2, 2]]
W
wanghaoshuang 已提交
105 106 107
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


108 109
class TestSequenceExpandCase4(TestSequenceExpand):
    def set_data(self):
D
dzhwinter 已提交
110
        data = np.random.uniform(0.1, 1, [5 * 2, 1])
Y
yangyaming 已提交
111
        x_data = np.array(data).reshape([5, 2]).astype('float32')
112 113 114
        x_lod = [[2, 3]]
        y_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32')
        y_lod = [[2], [2, 3]]
115 116 117
        self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)}


W
wanghaoshuang 已提交
118 119
if __name__ == '__main__':
    unittest.main()